diff --git a/NEWS.md b/NEWS.md index 87f645dfb30bed..045bba71d59ffc 100644 --- a/NEWS.md +++ b/NEWS.md @@ -777,6 +777,10 @@ Deprecated or removed * The aliases `Complex32`, `Complex64` and `Complex128` have been deprecated in favor of `ComplexF16`, `ComplexF32` and `ComplexF64` respectively ([#24647]). + * `Base.parentindexes` and `SharedArrays.localindexes` have been renamed to `parentindices` + and `localindices`, respectively. Similarly, the `indexes` field in the `SubArray` type + has been renamed to `indices` without deprecation ([#25088]). + * `Associative` has been deprecated in favor of `AbstractDict` ([#25012]). Command-line option changes @@ -1756,3 +1760,4 @@ Command-line option changes [#24653]: https://github.com/JuliaLang/julia/issues/24653 [#24869]: https://github.com/JuliaLang/julia/issues/24869 [#25021]: https://github.com/JuliaLang/julia/issues/25021 +[#25088]: https://github.com/JuliaLang/julia/issues/25088 diff --git a/base/abstractarray.jl b/base/abstractarray.jl index 9aaabfeee6d2e0..9e1e9bd370d2f0 100644 --- a/base/abstractarray.jl +++ b/base/abstractarray.jl @@ -1876,22 +1876,22 @@ function mapslices(f, A::AbstractArray, dims::AbstractVector) R[ridx...] = r1 nidx = length(otherdims) - indexes = Iterators.drop(CartesianRange(itershape), 1) - inner_mapslices!(safe_for_reuse, indexes, nidx, idx, otherdims, ridx, Aslice, A, f, R) + indices = Iterators.drop(CartesianRange(itershape), 1) + inner_mapslices!(safe_for_reuse, indices, nidx, idx, otherdims, ridx, Aslice, A, f, R) end -@noinline function inner_mapslices!(safe_for_reuse, indexes, nidx, idx, otherdims, ridx, Aslice, A, f, R) +@noinline function inner_mapslices!(safe_for_reuse, indices, nidx, idx, otherdims, ridx, Aslice, A, f, R) if safe_for_reuse # when f returns an array, R[ridx...] = f(Aslice) line copies elements, # so we can reuse Aslice - for I in indexes # skip the first element, we already handled it + for I in indices # skip the first element, we already handled it replace_tuples!(nidx, idx, ridx, otherdims, I) _unsafe_getindex!(Aslice, A, idx...) R[ridx...] = f(Aslice) end else # we can't guarantee safety (#18524), so allocate new storage for each slice - for I in indexes + for I in indices replace_tuples!(nidx, idx, ridx, otherdims, I) R[ridx...] = f(A[idx...]) end diff --git a/base/array.jl b/base/array.jl index 04b3e90b37be68..c3ee01b4a4ad34 100644 --- a/base/array.jl +++ b/base/array.jl @@ -1683,7 +1683,7 @@ findlast(testf::Function, A) = findprev(testf, A, endof(A)) """ find(f::Function, A) -Return a vector `I` of the linear indexes of `A` where `f(A[I])` returns `true`. +Return a vector `I` of the linear indices of `A` where `f(A[I])` returns `true`. If there are no such elements of `A`, return an empty array. # Examples @@ -1710,7 +1710,7 @@ julia> find(isodd, [2, 4]) ``` """ function find(testf::Function, A) - # use a dynamic-length array to store the indexes, then copy to a non-padded + # use a dynamic-length array to store the indices, then copy to a non-padded # array for the return tmpI = Vector{Int}() inds = _index_remapper(A) @@ -1775,7 +1775,7 @@ findn(A::AbstractVector) = find(A) """ findn(A) -Return a vector of indexes for each dimension giving the locations of the non-zeros in `A` +Return a vector of indices for each dimension giving the locations of the non-zeros in `A` (determined by `A[i]!=0`). If there are no non-zero elements of `A`, return a 2-tuple of empty arrays. @@ -1817,7 +1817,7 @@ end """ findnz(A) -Return a tuple `(I, J, V)` where `I` and `J` are the row and column indexes of the non-zero +Return a tuple `(I, J, V)` where `I` and `J` are the row and column indices of the non-zero values in matrix `A`, and `V` is a vector of the non-zero values. # Examples diff --git a/base/asyncmap.jl b/base/asyncmap.jl index 2b4a3864cfd10e..83b3c255792719 100644 --- a/base/asyncmap.jl +++ b/base/asyncmap.jl @@ -313,7 +313,7 @@ function start(itr::AsyncCollector) itr.batch_size = verify_batch_size(itr.batch_size) if itr.batch_size !== nothing exec_func = batch -> begin - # extract indexes from the input tuple + # extract indices from the input tuple batch_idxs = map(x->x[1], batch) # and the args tuple.... diff --git a/base/bitarray.jl b/base/bitarray.jl index 25ed30e203e66a..4b95491fa6f080 100644 --- a/base/bitarray.jl +++ b/base/bitarray.jl @@ -1263,7 +1263,7 @@ end function reverse!(B::BitVector) # Basic idea: each chunk is divided into two blocks of size k = n % 64, and - # h = 64 - k. Walk from either end (with indexes i and j) reversing chunks + # h = 64 - k. Walk from either end (with indices i and j) reversing chunks # and separately ORing their two blocks into place. # # chunk 3 chunk 2 chunk 1 diff --git a/base/deprecated.jl b/base/deprecated.jl index 393a8813bd3aa8..d0dce4b09ee1f3 100644 --- a/base/deprecated.jl +++ b/base/deprecated.jl @@ -225,7 +225,7 @@ function convert(::Type{UpperTriangular}, A::Bidiagonal) end # Deprecate three-arg SubArray since the constructor doesn't need the dims tuple -@deprecate SubArray(parent::AbstractArray, indexes::Tuple, dims::Tuple) SubArray(parent, indexes) +@deprecate SubArray(parent::AbstractArray, indices::Tuple, dims::Tuple) SubArray(parent, indices) # Deprecate vectorized unary functions over sparse matrices in favor of compact broadcast syntax (#17265). for f in (:sind, :asind, :tand, :atand, :sinpi, :cosc, :ceil, :floor, :trunc, @@ -3254,6 +3254,9 @@ end @deprecate indices(a) axes(a) @deprecate indices(a, d) axes(a, d) +# Issue #12902 +@deprecate parentindexes parentindices + # END 0.7 deprecations # BEGIN 1.0 deprecations diff --git a/base/dict.jl b/base/dict.jl index 840077d9e51fa9..f766f091cfbe5e 100644 --- a/base/dict.jl +++ b/base/dict.jl @@ -96,7 +96,7 @@ mutable struct Dict{K,V} <: AbstractDict{K,V} ndel::Int count::Int age::UInt - idxfloor::Int # an index <= the indexes of all used slots + idxfloor::Int # an index <= the indices of all used slots maxprobe::Int function Dict{K,V}() where V where K diff --git a/base/exports.jl b/base/exports.jl index 8220c3ae1b2f94..2530ab9c55c267 100644 --- a/base/exports.jl +++ b/base/exports.jl @@ -478,7 +478,7 @@ export nonzeros, ones, parent, - parentindexes, + parentindices, partialsort, partialsort!, partialsortperm, diff --git a/base/intfuncs.jl b/base/intfuncs.jl index 76b45f90cf4e88..e60ab100fd2ce6 100644 --- a/base/intfuncs.jl +++ b/base/intfuncs.jl @@ -752,7 +752,7 @@ bitstring(x::Union{Int128,UInt128}) = bin(reinterpret(UInt128,x),128) Return an array with element type `T` (default `Int`) of the digits of `n` in the given base, optionally padded with zeros to a specified size. More significant digits are at -higher indexes, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`. +higher indices, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`. # Examples ```jldoctest @@ -796,7 +796,7 @@ hastypemax(::Type{T}) where {T} = applicable(typemax, T) digits!(array, n::Integer, base::Integer=10) Fills an array of the digits of `n` in the given base. More significant digits are at higher -indexes. If the array length is insufficient, the least significant digits are filled up to +indices. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros. # Examples diff --git a/base/multidimensional.jl b/base/multidimensional.jl index 7fe6b03d29cb4d..5e6039ab08a57a 100644 --- a/base/multidimensional.jl +++ b/base/multidimensional.jl @@ -427,7 +427,7 @@ index_lengths() = () @inline index_lengths(A::AbstractArray, rest...) = (length(A), index_lengths(rest...)...) @inline index_lengths(A::Slice, rest...) = (length(indices1(A)), index_lengths(rest...)...) -# shape of array to create for getindex() with indexes I, dropping scalars +# shape of array to create for getindex() with indices I, dropping scalars # returns a Tuple{Vararg{AbstractUnitRange}} of indices index_shape() = () @inline index_shape(::Real, rest...) = index_shape(rest...) diff --git a/base/reshapedarray.jl b/base/reshapedarray.jl index e4f7daa2c56454..070d25ffc20b75 100644 --- a/base/reshapedarray.jl +++ b/base/reshapedarray.jl @@ -177,7 +177,7 @@ size(A::ReshapedArray) = A.dims similar(A::ReshapedArray, eltype::Type, dims::Dims) = similar(parent(A), eltype, dims) IndexStyle(::Type{<:ReshapedArrayLF}) = IndexLinear() parent(A::ReshapedArray) = A.parent -parentindexes(A::ReshapedArray) = map(s->1:s, size(parent(A))) +parentindices(A::ReshapedArray) = map(s->1:s, size(parent(A))) reinterpret(::Type{T}, A::ReshapedArray, dims::Dims) where {T} = reinterpret(T, parent(A), dims) @inline ind2sub_rs(::Tuple{}, i::Int) = i @@ -193,9 +193,9 @@ end @inbounds ret = parent(A)[index] ret end -@inline function getindex(A::ReshapedArray{T,N}, indexes::Vararg{Int,N}) where {T,N} - @boundscheck checkbounds(A, indexes...) - _unsafe_getindex(A, indexes...) +@inline function getindex(A::ReshapedArray{T,N}, indices::Vararg{Int,N}) where {T,N} + @boundscheck checkbounds(A, indices...) + _unsafe_getindex(A, indices...) end @inline function getindex(A::ReshapedArray, index::ReshapedIndex) @boundscheck checkbounds(parent(A), index.parentindex) @@ -203,8 +203,8 @@ end ret end -@inline function _unsafe_getindex(A::ReshapedArray{T,N}, indexes::Vararg{Int,N}) where {T,N} - i = sub2ind(size(A), indexes...) +@inline function _unsafe_getindex(A::ReshapedArray{T,N}, indices::Vararg{Int,N}) where {T,N} + i = sub2ind(size(A), indices...) I = ind2sub_rs(A.mi, i) _unsafe_getindex_rs(parent(A), I) end @@ -216,9 +216,9 @@ _unsafe_getindex_rs(A, i::Integer) = (@inbounds ret = A[i]; ret) @inbounds parent(A)[index] = val val end -@inline function setindex!(A::ReshapedArray{T,N}, val, indexes::Vararg{Int,N}) where {T,N} - @boundscheck checkbounds(A, indexes...) - _unsafe_setindex!(A, val, indexes...) +@inline function setindex!(A::ReshapedArray{T,N}, val, indices::Vararg{Int,N}) where {T,N} + @boundscheck checkbounds(A, indices...) + _unsafe_setindex!(A, val, indices...) end @inline function setindex!(A::ReshapedArray, val, index::ReshapedIndex) @boundscheck checkbounds(parent(A), index.parentindex) @@ -226,15 +226,15 @@ end val end -@inline function _unsafe_setindex!(A::ReshapedArray{T,N}, val, indexes::Vararg{Int,N}) where {T,N} - @inbounds parent(A)[ind2sub_rs(A.mi, sub2ind(size(A), indexes...))...] = val +@inline function _unsafe_setindex!(A::ReshapedArray{T,N}, val, indices::Vararg{Int,N}) where {T,N} + @inbounds parent(A)[ind2sub_rs(A.mi, sub2ind(size(A), indices...))...] = val val end # helpful error message for a common failure case const ReshapedRange{T,N,A<:AbstractRange} = ReshapedArray{T,N,A,Tuple{}} setindex!(A::ReshapedRange, val, index::Int) = _rs_setindex!_err() -setindex!(A::ReshapedRange{T,N}, val, indexes::Vararg{Int,N}) where {T,N} = _rs_setindex!_err() +setindex!(A::ReshapedRange{T,N}, val, indices::Vararg{Int,N}) where {T,N} = _rs_setindex!_err() setindex!(A::ReshapedRange, val, index::ReshapedIndex) = _rs_setindex!_err() @noinline _rs_setindex!_err() = error("indexed assignment fails for a reshaped range; consider calling collect") diff --git a/base/serialize.jl b/base/serialize.jl index fe052f82175da9..d3e6129a5c84da 100644 --- a/base/serialize.jl +++ b/base/serialize.jl @@ -274,16 +274,16 @@ end function trimmedsubarray(V::SubArray{T,N,A}) where {T,N,A<:Array} dest = Array{eltype(V)}(uninitialized, trimmedsize(V)) copy!(dest, V) - _trimmedsubarray(dest, V, (), V.indexes...) + _trimmedsubarray(dest, V, (), V.indices...) end -trimmedsize(V) = index_lengths(V.indexes...) +trimmedsize(V) = index_lengths(V.indices...) -function _trimmedsubarray(A, V::SubArray{T,N,P,I,LD}, newindexes) where {T,N,P,I,LD} - LD && return SubArray{T,N,P,I,LD}(A, newindexes, Base.compute_offset1(A, 1, newindexes), 1) - SubArray{T,N,P,I,LD}(A, newindexes, 0, 0) +function _trimmedsubarray(A, V::SubArray{T,N,P,I,LD}, newindices) where {T,N,P,I,LD} + LD && return SubArray{T,N,P,I,LD}(A, newindices, Base.compute_offset1(A, 1, newindices), 1) + SubArray{T,N,P,I,LD}(A, newindices, 0, 0) end -_trimmedsubarray(A, V, newindexes, index::ViewIndex, indexes...) = _trimmedsubarray(A, V, (newindexes..., trimmedindex(V.parent, length(newindexes)+1, index)), indexes...) +_trimmedsubarray(A, V, newindices, index::ViewIndex, indices...) = _trimmedsubarray(A, V, (newindices..., trimmedindex(V.parent, length(newindices)+1, index)), indices...) trimmedindex(P, d, i::Real) = oftype(i, 1) trimmedindex(P, d, i::Colon) = i diff --git a/base/show.jl b/base/show.jl index 39b20e3339d407..c7c515bf6efb00 100644 --- a/base/show.jl +++ b/base/show.jl @@ -1700,7 +1700,7 @@ because of a definition similar to function Base.showarg(io::IO, v::SubArray, toplevel) print(io, "view(") showarg(io, parent(v), false) - print(io, ", ", join(v.indexes, ", ")) + print(io, ", ", join(v.indices, ", ")) print(io, ')') toplevel && print(io, " with eltype ", eltype(v)) end @@ -1728,7 +1728,7 @@ end function showarg(io::IO, v::SubArray, toplevel) print(io, "view(") showarg(io, parent(v), false) - showindices(io, v.indexes...) + showindices(io, v.indices...) print(io, ')') toplevel && print(io, " with eltype ", eltype(v)) end diff --git a/base/sparse/sparsevector.jl b/base/sparse/sparsevector.jl index 110a63c9912923..c08b1cd2eeab16 100644 --- a/base/sparse/sparsevector.jl +++ b/base/sparse/sparsevector.jl @@ -45,7 +45,7 @@ count(f, x::SparseVector) = count(f, x.nzval) + f(zero(eltype(x)))*(length(x) - nonzeros(x::SparseVector) = x.nzval function nonzeros(x::SparseColumnView) - rowidx, colidx = parentindexes(x) + rowidx, colidx = parentindices(x) A = parent(x) @inbounds y = view(A.nzval, nzrange(A, colidx)) return y @@ -53,7 +53,7 @@ end nonzeroinds(x::SparseVector) = x.nzind function nonzeroinds(x::SparseColumnView) - rowidx, colidx = parentindexes(x) + rowidx, colidx = parentindices(x) A = parent(x) @inbounds y = view(A.rowval, nzrange(A, colidx)) return y @@ -105,7 +105,7 @@ LinAlg.fillstored!(x::SparseVector, y) = (fill!(x.nzval, y); x) ### Construction from lists of indices and values function _sparsevector!(I::Vector{<:Integer}, V::Vector, len::Integer) - # pre-condition: no duplicate indexes in I + # pre-condition: no duplicate indices in I if !isempty(I) p = sortperm(I) permute!(I, p) diff --git a/base/strings/search.jl b/base/strings/search.jl index 4b108e4e0a0b5c..6981144d14da99 100644 --- a/base/strings/search.jl +++ b/base/strings/search.jl @@ -75,7 +75,7 @@ Search for the first occurrence of the given characters within the given string. argument may be a single character, a vector or a set of characters, a string, or a regular expression (though regular expressions are only allowed on contiguous strings, such as ASCII or UTF-8 strings). The third argument optionally specifies a starting index. The return -value is a range of indexes where the matching sequence is found, such that `s[search(s,x)] == x`: +value is a range of indices where the matching sequence is found, such that `s[search(s,x)] == x`: `search(string, "substring")` = `start:end` such that `string[start:end] == "substring"`, or `0:-1` if unmatched. diff --git a/base/subarray.jl b/base/subarray.jl index 9625161781a385..97afeddeaaf175 100644 --- a/base/subarray.jl +++ b/base/subarray.jl @@ -7,39 +7,39 @@ const ScalarIndex = Real # L is true if the view itself supports fast linear indexing struct SubArray{T,N,P,I,L} <: AbstractArray{T,N} parent::P - indexes::I + indices::I offset1::Int # for linear indexing and pointer, only valid when L==true stride1::Int # used only for linear indexing - function SubArray{T,N,P,I,L}(parent, indexes, offset1, stride1) where {T,N,P,I,L} + function SubArray{T,N,P,I,L}(parent, indices, offset1, stride1) where {T,N,P,I,L} @_inline_meta - check_parent_index_match(parent, indexes) - new(parent, indexes, offset1, stride1) + check_parent_index_match(parent, indices) + new(parent, indices, offset1, stride1) end end # Compute the linear indexability of the indices, and combine it with the linear indexing of the parent -function SubArray(parent::AbstractArray, indexes::Tuple) +function SubArray(parent::AbstractArray, indices::Tuple) @_inline_meta - SubArray(IndexStyle(viewindexing(indexes), IndexStyle(parent)), parent, ensure_indexable(indexes), index_dimsum(indexes...)) + SubArray(IndexStyle(viewindexing(indices), IndexStyle(parent)), parent, ensure_indexable(indices), index_dimsum(indices...)) end -function SubArray(::IndexCartesian, parent::P, indexes::I, ::NTuple{N,Any}) where {P,I,N} +function SubArray(::IndexCartesian, parent::P, indices::I, ::NTuple{N,Any}) where {P,I,N} @_inline_meta - SubArray{eltype(P), N, P, I, false}(parent, indexes, 0, 0) + SubArray{eltype(P), N, P, I, false}(parent, indices, 0, 0) end -function SubArray(::IndexLinear, parent::P, indexes::I, ::NTuple{N,Any}) where {P,I,N} +function SubArray(::IndexLinear, parent::P, indices::I, ::NTuple{N,Any}) where {P,I,N} @_inline_meta # Compute the stride and offset - stride1 = compute_stride1(parent, indexes) - SubArray{eltype(P), N, P, I, true}(parent, indexes, compute_offset1(parent, stride1, indexes), stride1) + stride1 = compute_stride1(parent, indices) + SubArray{eltype(P), N, P, I, true}(parent, indices, compute_offset1(parent, stride1, indices), stride1) end -check_parent_index_match(parent, indexes) = check_parent_index_match(parent, index_ndims(indexes...)) +check_parent_index_match(parent, indices) = check_parent_index_match(parent, index_ndims(indices...)) check_parent_index_match(parent::AbstractArray{T,N}, ::NTuple{N, Bool}) where {T,N} = nothing check_parent_index_match(parent, ::NTuple{N, Bool}) where {N} = throw(ArgumentError("number of indices ($N) must match the parent dimensionality ($(ndims(parent)))")) # This computes the linear indexing compatability for a given tuple of indices viewindexing() = IndexLinear() -# Leading scalar indexes simply increase the stride +# Leading scalar indices simply increase the stride viewindexing(I::Tuple{ScalarIndex, Vararg{Any}}) = (@_inline_meta; viewindexing(tail(I))) # Slices may begin a section which may be followed by any number of Slices viewindexing(I::Tuple{Slice, Slice, Vararg{Any}}) = (@_inline_meta; viewindexing(tail(I))) @@ -82,15 +82,15 @@ julia> parent(s_a) ``` """ parent(V::SubArray) = V.parent -parentindexes(V::SubArray) = V.indexes +parentindices(V::SubArray) = V.indices parent(a::AbstractArray) = a """ - parentindexes(A) + parentindices(A) -From an array view `A`, returns the corresponding indexes in the parent. +From an array view `A`, returns the corresponding indices in the parent. """ -parentindexes(a::AbstractArray) = ntuple(i->OneTo(size(a,i)), ndims(a)) +parentindices(a::AbstractArray) = ntuple(i->OneTo(size(a,i)), ndims(a)) ## SubArray creation # We always assume that the dimensionality of the parent matches the number of @@ -159,15 +159,15 @@ _maybe_reindex(V, I, A::Tuple{AbstractArray{<:AbstractCartesianIndex{1}}, Vararg _maybe_reindex(V, I, A::Tuple{Any, Vararg{Any}}) = (@_inline_meta; _maybe_reindex(V, I, tail(A))) function _maybe_reindex(V, I, ::Tuple{}) @_inline_meta - @inbounds idxs = to_indices(V.parent, reindex(V, V.indexes, I)) + @inbounds idxs = to_indices(V.parent, reindex(V, V.indices, I)) SubArray(V.parent, idxs) end ## Re-indexing is the heart of a view, transforming A[i, j][x, y] to A[i[x], j[y]] # -# Recursively look through the heads of the parent- and sub-indexes, considering +# Recursively look through the heads of the parent- and sub-indices, considering # the following cases: -# * Parent index is array -> re-index that with one or more sub-indexes (one per dimension) +# * Parent index is array -> re-index that with one or more sub-indices (one per dimension) # * Parent index is Colon -> just use the sub-index as provided # * Parent index is scalar -> that dimension was dropped, so skip the sub-index and use the index as is @@ -179,7 +179,7 @@ reindex(V, ::Tuple{}, ::Tuple{}) = () reindex(V, idxs::Tuple{ScalarIndex, Vararg{Any}}, subidxs::Tuple{Vararg{Any}}) = (@_propagate_inbounds_meta; (idxs[1], reindex(V, tail(idxs), subidxs)...)) -# Slices simply pass their subindexes straight through +# Slices simply pass their subindices straight through reindex(V, idxs::Tuple{Slice, Vararg{Any}}, subidxs::Tuple{Any, Vararg{Any}}) = (@_propagate_inbounds_meta; (subidxs[1], reindex(V, tail(idxs), tail(subidxs))...)) @@ -207,7 +207,7 @@ SlowSubArray{T,N,P,I} = SubArray{T,N,P,I,false} function getindex(V::SlowSubArray{T,N}, I::Vararg{Int,N}) where {T,N} @_inline_meta @boundscheck checkbounds(V, I...) - @inbounds r = V.parent[reindex(V, V.indexes, I)...] + @inbounds r = V.parent[reindex(V, V.indices, I)...] r end @@ -230,7 +230,7 @@ end function setindex!(V::SlowSubArray{T,N}, x, I::Vararg{Int,N}) where {T,N} @_inline_meta @boundscheck checkbounds(V, I...) - @inbounds V.parent[reindex(V, V.indexes, I)...] = x + @inbounds V.parent[reindex(V, V.indices, I)...] = x V end function setindex!(V::FastSubArray, x, i::Int) @@ -251,7 +251,7 @@ IndexStyle(::Type{<:SubArray}) = IndexCartesian() # Strides are the distance between adjacent elements in a given dimension, # so they are well-defined even for non-linear memory layouts -strides(V::SubArray) = substrides(V.parent, V.indexes) +strides(V::SubArray) = substrides(V.parent, V.indices) substrides(parent, I::Tuple) = substrides(1, parent, 1, I) substrides(s, parent, dim, ::Tuple{}) = () @@ -277,7 +277,7 @@ iscontiguous(::Type{<:FastContiguousSubArray}) = true first_index(V::FastSubArray) = V.offset1 + V.stride1 # cached for fast linear SubArrays function first_index(V::SubArray) - P, I = parent(V), V.indexes + P, I = parent(V), V.indices s1 = compute_stride1(P, I) s1 + compute_offset1(P, s1, I) end @@ -343,7 +343,7 @@ end # indices are taken from the range/vector # Since bounds-checking is performance-critical and uses # indices, it's worth optimizing these implementations thoroughly -axes(S::SubArray) = (@_inline_meta; _indices_sub(S, S.indexes...)) +axes(S::SubArray) = (@_inline_meta; _indices_sub(S, S.indices...)) _indices_sub(S::SubArray) = () _indices_sub(S::SubArray, ::Real, I...) = (@_inline_meta; _indices_sub(S, I...)) function _indices_sub(S::SubArray, i1::AbstractArray, I...) @@ -360,7 +360,7 @@ function parentdims(s::SubArray) sv = strides(s) j = 1 for i = 1:ndims(s.parent) - r = s.indexes[i] + r = s.indices[i] if j <= nd && (isa(r,Union{Slice,AbstractRange}) ? sp[i]*step(r) : sp[i]) == sv[j] dimindex[j] = i j += 1 diff --git a/base/twiceprecision.jl b/base/twiceprecision.jl index a17198dd47ba1f..06108e505c35a4 100644 --- a/base/twiceprecision.jl +++ b/base/twiceprecision.jl @@ -528,7 +528,7 @@ end function sum(r::StepRangeLen) l = length(r) - # Compute the contribution of step over all indexes. + # Compute the contribution of step over all indices. # Indexes on opposite side of r.offset contribute with opposite sign, # r.step * (sum(1:np) - sum(1:nn)) np, nn = l - r.offset, r.offset - 1 # positive, negative diff --git a/doc/src/devdocs/subarrays.md b/doc/src/devdocs/subarrays.md index d564b0b1369a13..ac69ef0f151c9f 100644 --- a/doc/src/devdocs/subarrays.md +++ b/doc/src/devdocs/subarrays.md @@ -6,7 +6,7 @@ documents some of the design principles and implementation of `SubArray`s. ## Indexing: cartesian vs. linear indexing Broadly speaking, there are two main ways to access data in an array. The first, often called -cartesian indexing, uses `N` indexes for an `N` -dimensional `AbstractArray`. For example, a +cartesian indexing, uses `N` indices for an `N` -dimensional `AbstractArray`. For example, a matrix `A` (2-dimensional) can be indexed in cartesian style as `A[i,j]`. The second indexing method, referred to as linear indexing, uses a single index even for higher-dimensional objects. For example, if `A = reshape(1:12, 3, 4)`, then the expression `A[5]` returns the value 5. Julia @@ -20,7 +20,7 @@ entry relative to the beginning of the array. However, this is not true for man types: examples include [`SparseMatrixCSC`](@ref), arrays that require some kind of computation (such as interpolation), and the type under discussion here, `SubArray`. For these types, the underlying information is more naturally described in terms of -cartesian indexes. +cartesian indices. You can manually convert from a cartesian index to a linear index with `sub2ind`, and vice versa using `ind2sub`. `getindex` and `setindex!` functions for `AbstractArray` types may include similar @@ -74,7 +74,7 @@ The strategy adopted is first and foremost expressed in the definition of the ty ```julia struct SubArray{T,N,P,I,L} <: AbstractArray{T,N} parent::P - indexes::I + indices::I offset1::Int # for linear indexing and pointer, only valid when L==true stride1::Int # used only for linear indexing ... @@ -93,7 +93,7 @@ Note in particular the tuple parameter, which stores the types of the indices us `S1`. Likewise, ```jldoctest subarray -julia> S1.indexes +julia> S1.indices (Base.Slice(Base.OneTo(2)), 1, 2:3) ``` @@ -108,23 +108,23 @@ of the parent array, whereas for `S2` one needs to apply them to the second and approach to indexing would be to do the type-analysis at runtime: ```julia -parentindexes = Vector{Any}() -for thisindex in S.indexes +parentindices = Vector{Any}() +for thisindex in S.indices ... if isa(thisindex, Int) - # Don't consume one of the input indexes - push!(parentindexes, thisindex) + # Don't consume one of the input indices + push!(parentindices, thisindex) elseif isa(thisindex, AbstractVector) # Consume an input index - push!(parentindexes, thisindex[inputindex[j]]) + push!(parentindices, thisindex[inputindex[j]]) j += 1 elseif isa(thisindex, AbstractMatrix) # Consume two input indices - push!(parentindexes, thisindex[inputindex[j], inputindex[j+1]]) + push!(parentindices, thisindex[inputindex[j], inputindex[j+1]]) j += 2 elseif ... end -S.parent[parentindexes...] +S.parent[parentindices...] ``` Unfortunately, this would be disastrous in terms of performance: each element access would allocate @@ -136,7 +136,7 @@ number of input indices, and then it recurses on the remaining indices. In the c expands to ```julia -Base.reindex(S1, S1.indexes, (i, j)) == (i, S1.indexes[2], S1.indexes[3][j]) +Base.reindex(S1, S1.indices, (i, j)) == (i, S1.indices[2], S1.indices[3][j]) ``` for any pair of indices `(i,j)` (except [`CartesianIndex`](@ref)s and arrays thereof, see below). @@ -156,10 +156,10 @@ of the indices, and does not depend on values like the size of the parent array. a given set of indices supports fast linear indexing with the internal `Base.viewindexing` function: ```jldoctest subarray -julia> Base.viewindexing(S1.indexes) +julia> Base.viewindexing(S1.indices) IndexCartesian() -julia> Base.viewindexing(S2.indexes) +julia> Base.viewindexing(S2.indices) IndexLinear() ``` @@ -217,12 +217,12 @@ then `A[2:2:4,:]` does not have uniform stride, so we cannot guarantee efficient levels of indirection; they can simply re-compute the indices into the original parent array! * Hopefully by now it's fairly clear that supporting slices means that the dimensionality, given by the parameter `N`, is not necessarily equal to the dimensionality of the parent array or the - length of the `indexes` tuple. Neither do user-supplied indices necessarily line up with entries - in the `indexes` tuple (e.g., the second user-supplied index might correspond to the third dimension - of the parent array, and the third element in the `indexes` tuple). + length of the `indices` tuple. Neither do user-supplied indices necessarily line up with entries + in the `indices` tuple (e.g., the second user-supplied index might correspond to the third dimension + of the parent array, and the third element in the `indices` tuple). What might be less obvious is that the dimensionality of the stored parent array must be equal - to the number of effective indices in the `indexes` tuple. Some examples: + to the number of effective indices in the `indices` tuple. Some examples: ```julia A = reshape(1:35, 5, 7) # A 2d parent Array @@ -230,7 +230,7 @@ then `A[2:2:4,:]` does not have uniform stride, so we cannot guarantee efficient S = view(A, :, :, 1:1) # Appending extra indices is supported ``` - Naively, you'd think you could just set `S.parent = A` and `S.indexes = (:,:,1:1)`, but supporting + Naively, you'd think you could just set `S.parent = A` and `S.indices = (:,:,1:1)`, but supporting this dramatically complicates the reindexing process, especially for views of views. Not only do you need to dispatch on the types of the stored indices, but you need to examine whether a given index is the final one and "merge" any remaining stored indices together. This is not an @@ -244,18 +244,18 @@ then `A[2:2:4,:]` does not have uniform stride, so we cannot guarantee efficient `reindex` simply dispatches on the type of the stored indices in order to determine how many passed indices should be used and where they should go. But with `CartesianIndex`, there's no longer a one-to-one correspondence between the number of passed arguments and the number of dimensions - that they index into. If we return to the above example of `Base.reindex(S1, S1.indexes, (i, j))`, + that they index into. If we return to the above example of `Base.reindex(S1, S1.indices, (i, j))`, you can see that the expansion is incorrect for `i, j = CartesianIndex(), CartesianIndex(2,1)`. It should *skip* the `CartesianIndex()` entirely and return: ```julia - (CartesianIndex(2,1)[1], S1.indexes[2], S1.indexes[3][CartesianIndex(2,1)[2]]) + (CartesianIndex(2,1)[1], S1.indices[2], S1.indices[3][CartesianIndex(2,1)[2]]) ``` Instead, though, we get: ```julia - (CartesianIndex(), S1.indexes[2], S1.indexes[3][CartesianIndex(2,1)]) + (CartesianIndex(), S1.indices[2], S1.indices[3][CartesianIndex(2,1)]) ``` Doing this correctly would require *combined* dispatch on both the stored and passed indices across diff --git a/doc/src/manual/methods.md b/doc/src/manual/methods.md index 9e50c816c74f68..0b22fedbde91dd 100644 --- a/doc/src/manual/methods.md +++ b/doc/src/manual/methods.md @@ -789,10 +789,10 @@ Closest candidates are: More usefully, it is possible to constrain varargs methods by a parameter. For example: ```julia -function getindex(A::AbstractArray{T,N}, indexes::Vararg{Number,N}) where {T,N} +function getindex(A::AbstractArray{T,N}, indices::Vararg{Number,N}) where {T,N} ``` -would be called only when the number of `indexes` matches the dimensionality of the array. +would be called only when the number of `indices` matches the dimensionality of the array. When only the type of supplied arguments needs to be constrained `Vararg{T}` can be equivalently written as `T...`. For instance `f(x::Int...) = x` is a shorthand for `f(x::Vararg{Int}) = x`. diff --git a/doc/src/manual/noteworthy-differences.md b/doc/src/manual/noteworthy-differences.md index 7ac7699bd23fa3..707f883c972f76 100644 --- a/doc/src/manual/noteworthy-differences.md +++ b/doc/src/manual/noteworthy-differences.md @@ -200,7 +200,7 @@ For users coming to Julia from R, these are some noteworthy differences: * In Julia, indexing of arrays, strings, etc. is 1-based not 0-based. * Julia's slice indexing includes the last element, unlike in Python. `a[2:3]` in Julia is `a[1:3]` in Python. - * Julia does not support negative indexes. In particular, the last element of a list or array is + * Julia does not support negative indices. In particular, the last element of a list or array is indexed with `end` in Julia, not `-1` as in Python. * Julia's `for`, `if`, `while`, etc. blocks are terminated by the `end` keyword. Indentation level is not significant as it is in Python. diff --git a/doc/src/manual/parallel-computing.md b/doc/src/manual/parallel-computing.md index 277e33459f2364..f66d0eead32ac7 100644 --- a/doc/src/manual/parallel-computing.md +++ b/doc/src/manual/parallel-computing.md @@ -525,7 +525,7 @@ end [`@async`](@ref) is similar to [`@spawn`](@ref), but only runs tasks on the local process. We use it to create a "feeder" task for each process. Each task picks the next index that needs to -be computed, then waits for its process to finish, then repeats until we run out of indexes. Note +be computed, then waits for its process to finish, then repeats until we run out of indices. Note that the feeder tasks do not begin to execute until the main task reaches the end of the [`@sync`](@ref) block, at which point it surrenders control and waits for all the local tasks to complete before returning from the function. The feeder tasks are able to share state via `nextidx` because @@ -894,7 +894,7 @@ julia> addprocs(3) julia> @everywhere using SharedArrays -julia> S = SharedArray{Int,2}((3,4), init = S -> S[localindexes(S)] = myid()) +julia> S = SharedArray{Int,2}((3,4), init = S -> S[localindices(S)] = myid()) 3×4 SharedArray{Int64,2}: 2 2 3 4 2 3 3 4 @@ -910,7 +910,7 @@ julia> S 2 7 4 4 ``` -[`SharedArrays.localindexes`](@ref) provides disjoint one-dimensional ranges of indexes, and is sometimes +[`SharedArrays.localindices`](@ref) provides disjoint one-dimensional ranges of indices, and is sometimes convenient for splitting up tasks among processes. You can, of course, divide the work any way you wish: @@ -950,7 +950,7 @@ into trouble: if `q[i,j,t]` is near the end of the block assigned to one worker is near the beginning of the block assigned to another, it's very likely that `q[i,j,t]` will not be ready at the time it's needed for computing `q[i,j,t+1]`. In such cases, one is better off chunking the array manually. Let's split along the second dimension. -Define a function that returns the `(irange, jrange)` indexes assigned to this worker: +Define a function that returns the `(irange, jrange)` indices assigned to this worker: ```julia-repl julia> @everywhere function myrange(q::SharedArray) diff --git a/doc/src/stdlib/arrays.md b/doc/src/stdlib/arrays.md index 7f8f45ed80bfef..ec4bdd2b4f1c44 100644 --- a/doc/src/stdlib/arrays.md +++ b/doc/src/stdlib/arrays.md @@ -101,7 +101,7 @@ Base.view Base.@view Base.@views Base.parent -Base.parentindexes +Base.parentindices Base.slicedim Base.reinterpret Base.reshape diff --git a/src/codegen.cpp b/src/codegen.cpp index 9a71d00ae99d1e..0e472d13493ab2 100644 --- a/src/codegen.cpp +++ b/src/codegen.cpp @@ -2424,15 +2424,15 @@ static bool emit_builtin_call(jl_codectx_t &ctx, jl_cgval_t *ret, jl_value_t *f, else if (f == jl_builtin_arrayref && nargs >= 3) { const jl_cgval_t &ary = argv[2]; - bool indexes_ok = true; + bool indices_ok = true; for (size_t i = 3; i <= nargs; i++) { if (argv[i].typ != (jl_value_t*)jl_long_type) { - indexes_ok = false; + indices_ok = false; break; } } jl_value_t *aty_dt = jl_unwrap_unionall(ary.typ); - if (jl_is_array_type(aty_dt) && indexes_ok) { + if (jl_is_array_type(aty_dt) && indices_ok) { jl_value_t *ety = jl_tparam0(aty_dt); jl_value_t *ndp = jl_tparam1(aty_dt); if (!jl_has_free_typevars(ety) && (jl_is_long(ndp) || nargs == 3)) { @@ -2479,15 +2479,15 @@ static bool emit_builtin_call(jl_codectx_t &ctx, jl_cgval_t *ret, jl_value_t *f, else if (f == jl_builtin_arrayset && nargs >= 4) { const jl_cgval_t &ary = argv[2]; const jl_cgval_t &val = argv[3]; - bool indexes_ok = true; + bool indices_ok = true; for (size_t i = 4; i <= nargs; i++) { if (argv[i].typ != (jl_value_t*)jl_long_type) { - indexes_ok = false; + indices_ok = false; break; } } jl_value_t *aty_dt = jl_unwrap_unionall(ary.typ); - if (jl_is_array_type(aty_dt) && indexes_ok) { + if (jl_is_array_type(aty_dt) && indices_ok) { jl_value_t *ety = jl_tparam0(aty_dt); jl_value_t *ndp = jl_tparam1(aty_dt); if (!jl_has_free_typevars(ety) && (jl_is_long(ndp) || nargs == 4)) { diff --git a/src/julia-syntax.scm b/src/julia-syntax.scm index d2ec70c7cae3a9..e2e940e362e6c3 100644 --- a/src/julia-syntax.scm +++ b/src/julia-syntax.scm @@ -115,10 +115,10 @@ (cdr ex)))))) ;; go through indices and replace the `end` symbol -;; a = array being indexed, i = list of indexes +;; a = array being indexed, i = list of indices ;; returns (values index-list stmts) where stmts are statements that need ;; to execute first. -(define (process-indexes a i) +(define (process-indices a i) (let loop ((lst i) (n 1) (stmts '()) @@ -1561,7 +1561,7 @@ (arr (if reuse (make-ssavalue) a)) (stmts (if reuse `((= ,arr ,a)) '()))) (receive - (new-idxs stuff) (process-indexes arr idxs) + (new-idxs stuff) (process-indices arr idxs) `(block ,@(append stmts stuff) (call getindex ,arr ,@new-idxs)))))) @@ -2098,7 +2098,7 @@ (r (if rrhs (make-ssavalue) rhs)) (rini (if rrhs `((= ,r ,(expand-forms rhs))) '()))) (receive - (new-idxs stuff) (process-indexes arr idxs) + (new-idxs stuff) (process-indices arr idxs) `(block ,@stmts ,.(map expand-forms stuff) diff --git a/src/julia.h b/src/julia.h index 9f6d1e0a468263..8269f3ffcdee80 100644 --- a/src/julia.h +++ b/src/julia.h @@ -455,7 +455,7 @@ typedef struct _jl_typemap_entry_t { // one level in a TypeMap tree // indexed by key if it is a sublevel in an array struct jl_ordereddict_t { - jl_array_t *indexes; // Array{Int{8,16,32}} + jl_array_t *indices; // Array{Int{8,16,32}} jl_array_t *values; // Array{union jl_typemap_t} }; typedef struct _jl_typemap_level_t { diff --git a/src/typemap.c b/src/typemap.c index b166a849ea51e6..096eeda67b0d58 100644 --- a/src/typemap.c +++ b/src/typemap.c @@ -249,7 +249,7 @@ union jl_typemap_t mtcache_hash_lookup(const struct jl_ordereddict_t *a, jl_valu ml.unknown = jl_nothing; if (!uid) return ml; - size_t idx = jl_intref(a->indexes, uid & (a->indexes->nrows-1)); + size_t idx = jl_intref(a->indices, uid & (a->indices->nrows-1)); if (idx > 0) { ml.unknown = jl_array_ptr_ref(a->values, idx - 1); if (ml.unknown == jl_nothing) @@ -301,7 +301,7 @@ static void mtcache_rehash(struct jl_ordereddict_t *pa, size_t newlen, jl_value_ n = jl_alloc_int_1d(nval + 1, newlen); } } - pa->indexes = n; + pa->indices = n; jl_gc_wb(parent, n); } @@ -338,20 +338,20 @@ static union jl_typemap_t *mtcache_hash_bp(struct jl_ordereddict_t *pa, jl_value // since they should have a lower priority and need to go into the sorted list return NULL; if (pa->values == (void*)jl_nothing) { - pa->indexes = jl_alloc_int_1d(0, INIT_CACHE_SIZE); - jl_gc_wb(parent, pa->indexes); + pa->indices = jl_alloc_int_1d(0, INIT_CACHE_SIZE); + jl_gc_wb(parent, pa->indices); pa->values = jl_alloc_vec_any(0); jl_gc_wb(parent, pa->values); } while (1) { - size_t slot = uid & (pa->indexes->nrows - 1); - size_t idx = jl_intref(pa->indexes, slot); + size_t slot = uid & (pa->indices->nrows - 1); + size_t idx = jl_intref(pa->indices, slot); if (idx == 0) { jl_array_ptr_1d_push(pa->values, jl_nothing); idx = jl_array_len(pa->values); - if (idx > jl_max_int(pa->indexes)) - mtcache_rehash(pa, jl_array_len(pa->indexes), parent, tparam, offs); - jl_intset(pa->indexes, slot, idx); + if (idx > jl_max_int(pa->indices)) + mtcache_rehash(pa, jl_array_len(pa->indices), parent, tparam, offs); + jl_intset(pa->indices, slot, idx); return &((union jl_typemap_t*)jl_array_data(pa->values))[idx - 1]; } union jl_typemap_t *pml = &((union jl_typemap_t*)jl_array_data(pa->values))[idx - 1]; @@ -369,7 +369,7 @@ static union jl_typemap_t *mtcache_hash_bp(struct jl_ordereddict_t *pa, jl_value } if (t == ty) return pml; - mtcache_rehash(pa, jl_array_len(pa->indexes) * 2, parent, tparam, offs); + mtcache_rehash(pa, jl_array_len(pa->indices) * 2, parent, tparam, offs); } } return NULL; @@ -852,9 +852,9 @@ static jl_typemap_level_t *jl_new_typemap_level(void) cache->key = NULL; cache->linear = (jl_typemap_entry_t*)jl_nothing; cache->any.unknown = jl_nothing; - cache->targ.indexes = (jl_array_t*)jl_nothing; + cache->targ.indices = (jl_array_t*)jl_nothing; cache->targ.values = (jl_array_t*)jl_nothing; - cache->arg1.indexes = (jl_array_t*)jl_nothing; + cache->arg1.indices = (jl_array_t*)jl_nothing; cache->arg1.values = (jl_array_t*)jl_nothing; return cache; } diff --git a/stdlib/SharedArrays/docs/src/index.md b/stdlib/SharedArrays/docs/src/index.md index 25e54030bd5e3a..bac1cd0db5d854 100644 --- a/stdlib/SharedArrays/docs/src/index.md +++ b/stdlib/SharedArrays/docs/src/index.md @@ -5,5 +5,5 @@ SharedArrays.SharedArray SharedArrays.procs(::SharedArray) SharedArrays.sdata SharedArrays.indexpids -SharedArrays.localindexes +SharedArrays.localindices ``` diff --git a/stdlib/SharedArrays/src/SharedArrays.jl b/stdlib/SharedArrays/src/SharedArrays.jl index 4f7366df409578..87f0bc5de6cf1b 100644 --- a/stdlib/SharedArrays/src/SharedArrays.jl +++ b/stdlib/SharedArrays/src/SharedArrays.jl @@ -16,7 +16,7 @@ import Base.Serializer: serialize_cycle_header, serialize_type, writetag, UNDEFR import Distributed: RRID, procs import Base.Filesystem: JL_O_CREAT, JL_O_RDWR, S_IRUSR, S_IWUSR -export SharedArray, SharedVector, SharedMatrix, sdata, indexpids, localindexes +export SharedArray, SharedVector, SharedMatrix, sdata, indexpids, localindices mutable struct SharedArray{T,N} <: DenseArray{T,N} id::RRID @@ -59,7 +59,7 @@ host. If `N` is specified by calling `SharedArray{T,N}(dims)`, then `N` must match the length of `dims`. If `pids` is left unspecified, the shared array will be mapped across all processes on the -current host, including the master. But, `localindexes` and `indexpids` will only refer to +current host, including the master. But, `localindices` and `indexpids` will only refer to worker processes. This facilitates work distribution code to use workers for actual computation with the master process acting as a driver. @@ -85,7 +85,7 @@ file is mmapped into the host memory, with the following consequences: If `pids` is left unspecified, the shared array will be mapped across all processes on the current host, including the master. But, -`localindexes` and `indexpids` will only refer to worker +`localindices` and `indexpids` will only refer to worker processes. This facilitates work distribution code to use workers for actual computation with the master process acting as a driver. @@ -325,20 +325,20 @@ sdata(S::SharedArray) = S.s sdata(A::AbstractArray) = A """ - localindexes(S::SharedArray) + localindices(S::SharedArray) -Returns a range describing the "default" indexes to be handled by the +Returns a range describing the "default" indices to be handled by the current process. This range should be interpreted in the sense of linear indexing, i.e., as a sub-range of `1:length(S)`. In multi-process contexts, returns an empty range in the parent process (or any process for which [`indexpids`](@ref) returns 0). -It's worth emphasizing that `localindexes` exists purely as a +It's worth emphasizing that `localindices` exists purely as a convenience, and you can partition work on the array among workers any -way you wish. For a `SharedArray`, all indexes should be equally fast +way you wish. For a `SharedArray`, all indices should be equally fast for each worker process. """ -localindexes(S::SharedArray) = S.pidx > 0 ? range_1dim(S, S.pidx) : 1:0 +localindices(S::SharedArray) = S.pidx > 0 ? range_1dim(S, S.pidx) : 1:0 unsafe_convert(::Type{Ptr{T}}, S::SharedArray{T}) where {T} = unsafe_convert(Ptr{T}, sdata(S)) unsafe_convert(::Type{Ptr{T}}, S::SharedArray ) where {T} = unsafe_convert(Ptr{T}, sdata(S)) @@ -557,12 +557,12 @@ reduce(f, S::SharedArray) = function map!(f, S::SharedArray, Q::SharedArray) - if (S !== Q) && (procs(S) != procs(Q) || localindexes(S) != localindexes(Q)) + if (S !== Q) && (procs(S) != procs(Q) || localindices(S) != localindices(Q)) throw(ArgumentError("incompatible source and destination arguments")) end @sync for p in procs(S) @spawnat p begin - for idx in localindexes(S) + for idx in localindices(S) S.s[idx] = f(Q.s[idx]) end end @@ -690,5 +690,6 @@ end # os-test SharedArray{T}(filename, dims, offset; kwargs...)) @deprecate(SharedArray(filename::AbstractString, ::Type{T}, dims::NTuple, offset; kwargs...) where {T}, SharedArray{T}(filename, dims, offset; kwargs...)) +@deprecate localindexes localindices end # module diff --git a/stdlib/SharedArrays/test/runtests.jl b/stdlib/SharedArrays/test/runtests.jl index 6b62a645d404c9..208f8150c4d461 100644 --- a/stdlib/SharedArrays/test/runtests.jl +++ b/stdlib/SharedArrays/test/runtests.jl @@ -31,7 +31,7 @@ function check_pids_all(S::SharedArray) pidtested = falses(size(S)) for p in procs(S) idxes_in_p = remotecall_fetch(p, S) do D - parentindexes(D.loc_subarr_1d)[1] + parentindices(D.loc_subarr_1d)[1] end @test all(sdata(S)[idxes_in_p] .== p) pidtested[idxes_in_p] = true @@ -55,7 +55,7 @@ end d = SharedArrays.shmem_rand(dims) for p in procs(d) idxes_in_p = remotecall_fetch(p, d) do D - parentindexes(D.loc_subarr_1d)[1] + parentindices(D.loc_subarr_1d)[1] end idxf = first(idxes_in_p) idxl = last(idxes_in_p) @@ -84,7 +84,7 @@ a = rand(dims) d = SharedArray{Int}(dims, init = D->fill!(D.loc_subarr_1d, myid())) for p in procs(d) idxes_in_p = remotecall_fetch(p, d) do D - parentindexes(D.loc_subarr_1d)[1] + parentindices(D.loc_subarr_1d)[1] end idxf = first(idxes_in_p) idxl = last(idxes_in_p) @@ -124,7 +124,7 @@ finalize(S) # Creating a new file fn2 = tempname() -S = SharedArray{Int,2}(fn2, sz, init=D->D[localindexes(D)] = myid()) +S = SharedArray{Int,2}(fn2, sz, init=D->D[localindices(D)] = myid()) @test S == filedata filedata2 = similar(Atrue) read!(fn2, filedata2) @@ -134,7 +134,7 @@ finalize(S) # Appending to a file fn3 = tempname() write(fn3, ones(UInt8, 4)) -S = SharedArray{UInt8}(fn3, sz, 4, mode="a+", init=D->D[localindexes(D)]=0x02) +S = SharedArray{UInt8}(fn3, sz, 4, mode="a+", init=D->D[localindices(D)]=0x02) len = prod(sz)+4 @test filesize(fn3) == len filedata = Vector{UInt8}(uninitialized, len) @@ -194,7 +194,7 @@ remotecall_fetch(setindex!, pids_d[findfirst(id->(id != myid()), pids_d)], d, 1. @test ds != d @test s != d copy!(d, s) -@everywhere setid!(A) = A[localindexes(A)] = myid() +@everywhere setid!(A) = A[localindices(A)] = myid() @everywhere procs(ds) setid!($ds) @test d == s @test ds != s diff --git a/test/abstractarray.jl b/test/abstractarray.jl index b74b8bc6b15fa2..e894850f4f23d1 100644 --- a/test/abstractarray.jl +++ b/test/abstractarray.jl @@ -629,7 +629,7 @@ mutable struct TSlowNIndexes{T,N} <: AbstractArray{T,N} end Base.IndexStyle(::Type{A}) where {A<:TSlowNIndexes} = Base.IndexCartesian() Base.size(A::TSlowNIndexes) = size(A.data) -Base.getindex(A::TSlowNIndexes, index::Int...) = error("Must use $(ndims(A)) indexes") +Base.getindex(A::TSlowNIndexes, index::Int...) = error("Must use $(ndims(A)) indices") Base.getindex(A::TSlowNIndexes{T,2}, i::Int, j::Int) where {T} = A.data[i,j] diff --git a/test/arrayops.jl b/test/arrayops.jl index f26192f2f8bdea..dbf19c13c913dc 100644 --- a/test/arrayops.jl +++ b/test/arrayops.jl @@ -104,7 +104,7 @@ end @test r[3,1] == 4 @test r[Base.ReshapedIndex(CartesianIndex((1,2)))] == 3 @test parent(reshape(r, (1,3))) === r.parent === s - @test parentindexes(r) == (1:1, 1:3) + @test parentindices(r) == (1:1, 1:3) @test reshape(r, (3,)) === r @test convert(Array{Int,1}, r) == [2,3,4] @test_throws MethodError convert(Array{Int,2}, r) @@ -120,7 +120,7 @@ end @test r[3,1] == 5 @test r[Base.ReshapedIndex(CartesianIndex((1,2)))] == 3 @test parent(reshape(r, (1,3))) === r.parent === s - @test parentindexes(r) == (1:1, 1:3) + @test parentindices(r) == (1:1, 1:3) @test reshape(r, (3,)) === r @test convert(Array{Int,1}, r) == [2,3,5] @test_throws MethodError convert(Array{Int,2}, r) @@ -1577,13 +1577,13 @@ end @test eltype(R) <: CartesianIndex{2} @test eltype(typeof(R)) <: CartesianIndex{2} @test eltype(CartesianRange{2}) <: CartesianIndex{2} - indexes = collect(R) - @test indexes[1] == CartesianIndex{2}(2,3) - @test indexes[2] == CartesianIndex{2}(3,3) - @test indexes[4] == CartesianIndex{2}(5,3) - @test indexes[5] == CartesianIndex{2}(2,4) - @test indexes[12] == CartesianIndex{2}(5,5) - @test length(indexes) == 12 + indices = collect(R) + @test indices[1] == CartesianIndex{2}(2,3) + @test indices[2] == CartesianIndex{2}(3,3) + @test indices[4] == CartesianIndex{2}(5,3) + @test indices[5] == CartesianIndex{2}(2,4) + @test indices[12] == CartesianIndex{2}(5,5) + @test length(indices) == 12 @test length(R) == 12 @test ndims(R) == 2 @test in(CartesianIndex((2,3)), R) diff --git a/test/cartesian.jl b/test/cartesian.jl index 7622a5bb7a7122..40badf6bb24bbb 100644 --- a/test/cartesian.jl +++ b/test/cartesian.jl @@ -12,6 +12,6 @@ ex = Base.Cartesian.exprresolve(:(if 5 > 4; :x; else :y; end)) @test convert(Int, CartesianIndex(42)) === 42 @test convert(Float64, CartesianIndex(42)) === 42.0 @test convert(Tuple, CartesianIndex(42, 1)) === (42, 1) - # can't convert higher-dimensional indexes to Int + # can't convert higher-dimensional indices to Int @test_throws MethodError convert(Int, CartesianIndex(42, 1)) end diff --git a/test/linalg/matmul.jl b/test/linalg/matmul.jl index 1a019db76a7afb..9a5a847c55aa3e 100644 --- a/test/linalg/matmul.jl +++ b/test/linalg/matmul.jl @@ -70,7 +70,7 @@ module MyArray15367 end Base.size(A::MyArray) = size(A.data) - Base.getindex(A::MyArray, indexes...) = A.data[indexes...] + Base.getindex(A::MyArray, indices...) = A.data[indices...] A = MyArray(rand(4,5)) b = rand(5) diff --git a/test/show.jl b/test/show.jl index 18f96eba765df6..ee23651881b401 100644 --- a/test/show.jl +++ b/test/show.jl @@ -628,12 +628,12 @@ show_f1(x...) = [x...] show_f2(x::Vararg{Any}) = [x...] show_f3(x::Vararg) = [x...] show_f4(x::Vararg{Any,3}) = [x...] -show_f5(A::AbstractArray{T, N}, indexes::Vararg{Int,N}) where {T, N} = [indexes...] +show_f5(A::AbstractArray{T, N}, indices::Vararg{Int,N}) where {T, N} = [indices...] test_mt(show_f1, "show_f1(x...)") test_mt(show_f2, "show_f2(x...)") test_mt(show_f3, "show_f3(x...)") test_mt(show_f4, "show_f4(x::Vararg{Any,3})") -test_mt(show_f5, "show_f5(A::AbstractArray{T,N}, indexes::Vararg{$Int,N})") +test_mt(show_f5, "show_f5(A::AbstractArray{T,N}, indices::Vararg{$Int,N})") # Issue #15525, printing of vcat @test sprint(show, :([a;])) == ":([a;])" diff --git a/test/simdloop.jl b/test/simdloop.jl index 5bd5ee98575f9e..55b6c4cf36ae14 100644 --- a/test/simdloop.jl +++ b/test/simdloop.jl @@ -108,32 +108,32 @@ end end # @simd with cartesian iteration -function simd_cartesian_range!(indexes, crng) +function simd_cartesian_range!(indices, crng) @simd for I in crng - push!(indexes, I) + push!(indices, I) end - indexes + indices end crng = CartesianRange(2:4, 0:1, 1:1, 3:5) -indexes = simd_cartesian_range!(Vector{eltype(crng)}(), crng) -@test indexes == vec(collect(crng)) +indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng) +@test indices == vec(collect(crng)) crng = CartesianRange(-1:1, 1:3) -indexes = simd_cartesian_range!(Vector{eltype(crng)}(), crng) -@test indexes == vec(collect(crng)) +indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng) +@test indices == vec(collect(crng)) crng = CartesianRange(-1:-1, 1:3) -indexes = simd_cartesian_range!(Vector{eltype(crng)}(), crng) -@test indexes == vec(collect(crng)) +indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng) +@test indices == vec(collect(crng)) crng = CartesianRange(2:4) -indexes = simd_cartesian_range!(Vector{eltype(crng)}(), crng) -@test indexes == collect(crng) +indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng) +@test indices == collect(crng) crng = CartesianRange() -indexes = simd_cartesian_range!(Vector{eltype(crng)}(), crng) -@test indexes == vec(collect(crng)) +indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng) +@test indices == vec(collect(crng)) # @simd with array as "range" # issue #13869 diff --git a/test/staged.jl b/test/staged.jl index 29ef1cbe64fb02..7e504c878d5101 100644 --- a/test/staged.jl +++ b/test/staged.jl @@ -67,10 +67,10 @@ splat3(A, 1:2, 1, 1:2) @test String(take!(stagediobuf)) == "(UnitRange{$intstr}, $intstr, UnitRange{$intstr})" B = view(A, 1:3, 2, 1:3) -@generated function mygetindex(S::SubArray, indexes::Real...) +@generated function mygetindex(S::SubArray, indices::Real...) T, N, A, I = S.parameters - if N != length(indexes) - error("Wrong number of indexes supplied") + if N != length(indices) + error("Wrong number of indices supplied") end Ip = I.parameters NP = length(Ip) @@ -78,9 +78,9 @@ B = view(A, 1:3, 2, 1:3) j = 1 for i = 1:NP if Ip[i] == Int - indexexprs[i] = :(S.indexes[$i]) + indexexprs[i] = :(S.indices[$i]) else - indexexprs[i] = :(S.indexes[$i][indexes[$j]]) + indexexprs[i] = :(S.indices[$i][indices[$j]]) j += 1 end end diff --git a/test/subarray.jl b/test/subarray.jl index cf9bf9af8d9199..be85d3bacef682 100644 --- a/test/subarray.jl +++ b/test/subarray.jl @@ -5,7 +5,7 @@ using Test ######## Utilities ########### # Generate an array similar to A[indx1, indx2, ...], but only call -# getindex with scalar-valued indexes. This will be safe even if +# getindex with scalar-valued indices. This will be safe even if # `getindex` someday calls `view`. # The "nodrop" variant does not drop any dimensions (not even trailing ones) @@ -72,10 +72,10 @@ function single_stride_dim(A::Array) Ar = reshape(A, shp...) # Compute the diff along dimension 1 if size(Ar, 1) > 1 - indexes = map(d->1:size(Ar,d), [1:ndims(Ar);]) - indexesp = copy(indexes); indexesp[1] = 2:size(Ar,1) - indexesm = copy(indexes); indexesm[1] = 1:size(Ar,1)-1 - dA = Ar[indexesp...] - Ar[indexesm...] + indices = map(d->1:size(Ar,d), [1:ndims(Ar);]) + indicesp = copy(indices); indicesp[1] = 2:size(Ar,1) + indicesm = copy(indices); indicesm[1] = 1:size(Ar,1)-1 + dA = Ar[indicesp...] - Ar[indicesm...] ustride = unique(dA[:]) if length(ustride) == 1 # is it a single stride? ld += 1 @@ -118,13 +118,13 @@ function test_linear(@nospecialize(A), @nospecialize(B)) end if !isgood @show A - @show A.indexes + @show A.indices @show B error("Mismatch") end end -# "mixed" means 2 indexes even for N-dimensional arrays +# "mixed" means 2 indices even for N-dimensional arrays test_mixed(::AbstractArray{T,1}, ::Array) where {T} = nothing test_mixed(::AbstractArray{T,2}, ::Array) where {T} = nothing test_mixed(A, B::Array) = _test_mixed(A, reshape(B, size(A))) @@ -212,9 +212,9 @@ function runsubarraytests(@nospecialize(A), I...) C = Agen_nodrop(AA, I...) Cld = ld = min(single_stride_dim(C), dim_break_linindex(I)) Cdim = AIindex = 0 - while Cdim <= Cld && AIindex < length(A.indexes) + while Cdim <= Cld && AIindex < length(A.indices) AIindex += 1 - if isa(A.indexes[AIindex], Real) + if isa(A.indices[AIindex], Real) ld += 1 else Cdim += 1 @@ -225,7 +225,7 @@ function runsubarraytests(@nospecialize(A), I...) S = view(A, I...) catch err @show typeof(A) - @show A.indexes + @show A.indices @show I rethrow(err) end @@ -295,7 +295,7 @@ end ### Views from views ### -# "outer" indexes create snips that have at least size 5 along each dimension, +# "outer" indices create snips that have at least size 5 along each dimension, # with the exception of Int-slicing oindex = (:, 6, 3:7, reshape([12]), [8,4,6,12,5,7], [3:7 1:5 2:6 4:8 5:9]) @@ -349,7 +349,7 @@ A = copy(reshape(1:120, 3, 5, 8)) sA = view(A, 2:2, 1:5, :) @test strides(sA) == (1, 3, 15) @test parent(sA) == A -@test parentindexes(sA) == (2:2, 1:5, Base.Slice(1:8)) +@test parentindices(sA) == (2:2, 1:5, Base.Slice(1:8)) @test Base.parentdims(sA) == [1:3;] @test size(sA) == (1, 5, 8) @test axes(sA) === (Base.OneTo(1), Base.OneTo(5), Base.OneTo(8)) @@ -405,7 +405,7 @@ sB = view(B, 2:3, 2:3) A = copy(reshape(1:120, 3, 5, 8)) sA = view(A, 2, :, 1:8) @test parent(sA) == A -@test parentindexes(sA) == (2, Base.Slice(1:5), 1:8) +@test parentindices(sA) == (2, Base.Slice(1:5), 1:8) @test Base.parentdims(sA) == [2:3;] @test size(sA) == (5, 8) @test axes(sA) === (Base.OneTo(5), Base.OneTo(8)) @@ -428,12 +428,12 @@ sA = view(A, 1:2:3, 3, 1:2:8) @test size(sA) == (2,4) @test axes(sA) === (Base.OneTo(2), Base.OneTo(4)) @test strides(sA) == (2,30) -@test sA[:] == A[sA.indexes...][:] +@test sA[:] == A[sA.indices...][:] test_bounds(sA) let a = [5:8;] @test parent(a) == a - @test parentindexes(a) == (1:4,) + @test parentindices(a) == (1:4,) end # issue #6218 - logical indexing