-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathoperators.jl
412 lines (356 loc) · 12.5 KB
/
operators.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Random: randstring
include(joinpath(@__DIR__,"../Compiler/test/irutils.jl"))
@testset "ifelse" begin
@test ifelse(true, 1, 2) == 1
@test ifelse(false, 1, 2) == 2
let s = Set()
ifelse(true, push!(s, 1), push!(s, 2))
@test s == Set([1, 2])
end
let s = Set()
true ? push!(s, 1) : push!(s, 2)
false ? push!(s, 3) : push!(s, 4)
@test s == Set([1, 4])
end
let B = [true true false]
@test ifelse.(B, 1, 2) == [1 1 2]
@test ifelse.(B, 1, [2 3 4]) == [1 1 4]
@test ifelse.(B, [2 3 4], 1) == [2 3 1]
@test ifelse.(B, [2 3 4], [5 6 7]) == [2 3 7]
end
end
@testset "operations on Pairs" begin
@test reverse(Pair(1,2)) == Pair(2,1)
@test reverse(Pair("13","24")) == Pair("24","13")
@test typeof(reverse(Pair{String,Int64}("a",1))) == Pair{Int64,String}
@test convert(Pair{Float64,Float64}, 17 => 4711) === (17.0 => 4711.0)
@test convert(Pair{Int,Float64}, 17 => 4711) === (17 => 4711.0)
@test convert(Pair{Float64,Int}, 17 => 4711) === (17.0 => 4711)
@test convert(Pair{Any,Any}, 17 => 4711) === Pair{Any,Any}(17, 4711)
@test convert(Pair{Number,Number}, 17 => 4711) === Pair{Number,Number}(17, 4711)
@test promote(1=>1, 2=>2.0) === (1=>1.0, 2=>2.0)
@test promote(1=>1, 2.0=>2) === (1.0=>1, 2.0=>2)
@test promote(1=>1.0, 2.0=>2) === (1.0=>1.0, 2.0=>2.0)
@test promote(1=>1, :b=>2.0) === (Pair{Any,Float64}(1,1.0),Pair{Any,Float64}(:b,2.0))
@test isa([:a=>1, :b=>2], Vector{Pair{Symbol,Int}})
@test isa([:a=>1, :b=>2.0], Vector{Pair{Symbol,Float64}})
@test isa(["a"=>1, :b=>2.0], Vector{Pair{Any,Float64}})
p = 1=>:foo
@test first(p) == 1
@test last(p) === :foo
@test first(reverse(p)) === :foo
@test last(reverse(p)) == 1
@test lastindex(p) == 2
@test p[lastindex(p)] == p[end] == p[2] === :foo
end
# Infix `isa`
@test 1 isa Integer
@test (|)(2) == 2
@test xor(2) == 2
@test (⊻)(2) == 2
@test_throws MethodError min(Set([1]), Set([2]))
@test_throws MethodError max(Set([1]), Set([2]))
@test_throws MethodError minmax(Set([1]), Set([2]))
# Test if isless (not <) is used by min, max, minmax
# and commutativity.
struct TO23094
x::Int
end
Base.isless(a::TO23094, b::TO23094) = isless(a.x, b.x)
Base.isequal(a::TO23094, b::TO23094) = isequal(a.x, b.x)
import Base.<
<(a::TO23094, b::TO23094) = error("< should not be called")
@test isequal(min(TO23094(1), TO23094(2)), TO23094(1))
@test isequal(min(TO23094(2), TO23094(1)), TO23094(1))
@test isequal(max(TO23094(1), TO23094(2)), TO23094(2))
@test isequal(max(TO23094(2), TO23094(1)), TO23094(2))
@test isequal(minmax(TO23094(1), TO23094(2))[1], TO23094(1))
@test isequal(minmax(TO23094(1), TO23094(2))[2], TO23094(2))
@test isequal(minmax(TO23094(2), TO23094(1))[1], TO23094(1))
@test isequal(minmax(TO23094(2), TO23094(1))[2], TO23094(2))
let m = Module()
@eval m begin
struct Foo end
foo(xs) = isequal(xs[1], Foo())
end
@test !(@inferred m.foo(Any[42]))
end
@test isless('a','b')
@testset "isless on pairs of integers (because there is a fastpath)" begin
@test isless((1,2), (1,3))
@test isless((0,-2), (0,2))
@test isless((-1,2), (1,2))
@test isless((-1,-2), (1,2))
@test !isless((1,3), (1,2))
@test !isless((0,2), (0,-2))
@test !isless((1,2), (-1,2))
@test !isless((1,2), (-1,-2))
@test !isless((-1,-2), (-1,-2))
@test isless((typemin(Int), typemin(Int)), (0,0))
@test isless((1, 1), (Int8(2), Int8(2)))
@test !isless((UInt8(200),Int8(-1)), (UInt8(200),Int8(-1)))
@test isless((1, 1), (1, unsigned(2)))
end
@testset "isgreater" begin
# isgreater should be compatible with min.
min1(a, b) = Base.isgreater(a, b) ? b : a
# min promotes numerical arguments to the same type, but our quick min1
# doesn't, so use float test values instead of ints.
values = (1.0, 5.0, NaN, missing, Inf)
for a in values, b in values
@test min(a, b) === min1(a, b)
@test min((a,), (b,)) === min1((a,), (b,))
@test all(min([a], [b]) .=== min1([a], [b]))
end
end
@testset "isunordered" begin
@test isunordered(NaN)
@test isunordered(NaN32)
@test isunordered(missing)
@test !isunordered(1)
@test !isunordered([NaN, 1])
@test !isunordered([1.0, missing])
end
@testset "vectorized comparisons between numbers" begin
@test 1 .!= 2
@test 1 .== 1
@test 1 .< 2
@test 1 .<= 2
end
# issue #13144: max() with 4 or more array arguments
let xs = [[i:i+4;] for i in 1:10]
for n in 2:10
@test max.(xs[1:n]...) == [n:n+4;]
end
end
# issue #19714
struct T19714 <: Integer end
Base.float(::T19714) = 19714.0
Base.:/(::T19714, ::T19714) = T19714()
Base.convert(::Type{T19714}, ::Int) = T19714()
Base.promote_rule(::Type{T19714}, ::Type{Int}) = T19714
@test T19714()/1 === 1/T19714() === T19714()
@testset "operators with zero argument" begin
@test_throws(MethodError, +())
@test_throws(MethodError, *())
@test isempty(methods(+, ()))
@test isempty(methods(*, ()))
end
# pr #17155 and #33568
@testset "function composition" begin
@test (uppercase∘(x->string(x,base=16)))(239487) == "3A77F"
@test ∘(x -> x-2, x -> x-3, x -> x+5)(7) == 7
fs = [x -> x[1:2], uppercase, lowercase]
@test ∘(fs...)("ABC") == "AB"
# Like +() and *() we leave ∘() undefined.
# While `∘() = identity` is a reasonable definition for functions, this
# would cause headaches for composition of user defined morphisms.
# See also #34251
@test_throws(MethodError, ∘())
@test ∘(x -> (x, 1))(0) === (0, 1)
@test ∘(x -> (x, 2), x -> (x, 1))(0) === ((0, 1), 2)
@test ∘(x -> (x, 3), x -> (x, 2), x->(x,1))(0) === (((0, 1), 2), 3)
@test ∘(x -> (x, 4), x -> (x, 3), x->(x,2), x-> (x, 1))(0) === ((((0, 1), 2), 3), 4)
# test that user defined functors only need to overload the two arg version
struct FreeMagma
word
end
Base.:(∘)(a::FreeMagma, b::FreeMagma) = FreeMagma((a.word, b.word))
@test ∘(FreeMagma(1)) === FreeMagma(1)
@test ∘(FreeMagma(1), FreeMagma(2)) === FreeMagma((1,2))
@test ∘(FreeMagma(1), FreeMagma(2), FreeMagma(3)) === FreeMagma(((1,2), 3))
@test ∘(FreeMagma(1), FreeMagma(2), FreeMagma(3), FreeMagma(4)) === FreeMagma((((1,2), 3), 4))
@test fieldtypes(typeof(Float64 ∘ Int)) == (Type{Float64}, Type{Int})
@test repr(uppercase ∘ first) == "uppercase ∘ first"
@test sprint(show, "text/plain", uppercase ∘ first) == "uppercase ∘ first"
# test keyword args in composition
function kwf(a;b,c); a + b + c; end
@test (abs2 ∘ kwf)(1,b=2,c=3) == 36
end
@testset "Nested ComposedFunction's stability" begin
f(x) = (1, 1, x...)
g = (f ∘ (f ∘ f)) ∘ (f ∘ f ∘ f)
@test (@inferred (g∘g)(1)) == ntuple(Returns(1), 25)
@test (@inferred g(1)) == ntuple(Returns(1), 13)
h = (-) ∘ (-) ∘ (-) ∘ (-) ∘ (-) ∘ (-) ∘ sum
@test (@inferred h((1, 2, 3); init = 0.0)) == 6.0
issue_45877 = reduce(∘, fill(sin, 50))
@test Core.Compiler.is_foldable(Base.infer_effects(Base.unwrap_composed, (typeof(issue_45877),)))
@test fully_eliminated() do
issue_45877(1.0)
end
end
@testset "function negation" begin
str = randstring(20)
@test filter(!isuppercase, str) == replace(str, r"[A-Z]" => "")
@test filter(!islowercase, str) == replace(str, r"[a-z]" => "")
@test !!isnan === isnan
@test repr(!isnan) == "!isnan"
@test repr((-) ∘ sin) == "(-) ∘ sin"
@test repr(cos ∘ (sin ∘ tan)) == "cos ∘ (sin ∘ tan)"
@test repr(!(cos ∘ !sin)) == "!(cos ∘ !sin)"
@test repr(cos ∘ sin ∘ tan) == "cos ∘ sin ∘ tan" == repr((cos ∘ sin) ∘ tan)
end
# issue #19891
@testset "chained comparison" begin
B = 0 .< [1 -1 5] .< 3
@test B == [true false false]
B = 3 .> [1 -1 5] .> 0
@test B == [true false false]
end
struct TypeWrapper
t::Type
end
Base.:(<)(x::TypeWrapper, y::TypeWrapper) = (x.t <: y.t) & (x.t != y.t)
@testset "poset" begin
# Real
# / \
# Int Float64
# \ /
# Union{}
@test TypeWrapper(Int) <= TypeWrapper(Int)
@test TypeWrapper(Int) <= TypeWrapper(Real)
@test !(TypeWrapper(Int) <= TypeWrapper(Float64))
end
# issue #20355
@testset "mod1, fld1" begin
for T in [Int8, Int16, Int32, Int64],
x in T[typemin(T); typemin(T) + 1; -10:10; typemax(T)-1; typemax(T)],
y in T[typemin(T); typemin(T) + 1; -10:-1; 1:10; typemax(T)-1; typemax(T)]
m = mod1(x, y)
@test mod(x, y) == mod(m, y)
if y > 0
@test 0 < m <= y
else
@test y <= m < 0
end
if x == typemin(T) && y == -1
@test_throws DivideError fld1(x, y)
else
f = fld1(x, y)
@test (f - 1) * y + m == x
end
end
for T in [UInt8, UInt16, UInt32, UInt64],
x in T[0:10; typemax(T)-1; typemax(T)],
y in T[1:10; typemax(T)-1; typemax(T)]
m = mod1(x, y)
@test mod(x, y) == mod(m, y)
@test 0 < m <= y
f = fld1(x, y)
@test (f - 1) * y + m == x
end
for T in [Float32, Float64, Rational{Int64}],
x in T[k // 4 for k in -10:10],
y in T[k // 4 for k in [-10:-1; 1:10]]
m = mod1(x, y)
@test mod(x, y) == mod(m, y)
if y > 0
@test 0 < m <= y
else
@test y <= m < 0
end
f = fld1(x, y)
@test (f - 1) * y + m == x
end
@test fldmod1(4.0, 3) == fldmod1(4, 3)
# issue 28973
@test fld1(0.4, 0.9) == fld1(nextfloat(0.4), 0.9) == 1.0
end
@testset "Fix12" begin
x = 9
y = 7.0
fx = Base.Fix1(/, x)
fy = Base.Fix2(/, y)
@test fx(y) == x / y
@test fy(x) == x / y
end
@testset "curried comparisons" begin
eql5 = (==)(5)
neq5 = (!=)(5)
gte5 = (>=)(5)
lte5 = (<=)(5)
gt5 = (>)(5)
lt5 = (<)(5)
@test eql5(5) && !eql5(0)
@test neq5(6) && !neq5(5)
@test gte5(5) && gte5(6)
@test lte5(5) && lte5(4)
@test gt5(6) && !gt5(5)
@test lt5(4) && !lt5(5)
end
@testset "in tuples" begin
@test ∈(5, (1,5,10,11))
@test ∉(0, (1,5,10,11))
@test ∈(5, (1,"hi","hey",5.0))
@test ∉(0, (1,"hi","hey",5.0))
@test ∈(5, (5,))
@test ∉(0, (5,))
@test ∉(5, ())
end
@testset "ni" begin
@test ∋([1,5,10,11], 5)
@test !∋([1,10,11], 5)
@test ∋((1,5,10,11), 5)
@test ∌((1,10,11), 5)
@test ∋(5)([5,1])
@test !∋(42)([0,1,100])
@test ∌(0)(1:10)
@test ∋(0)(-2:2)
end
@test [Base.afoldl(+, 1:i...) for i = 1:40] == [i * (i + 1) ÷ 2 for i = 1:40]
@testset "Returns" begin
@test @inferred(Returns(1)() ) === 1
@test @inferred(Returns(1)(23) ) === 1
@test @inferred(Returns("a")(2,3)) == "a"
@test @inferred(Returns(1)(x=1, y=2)) === 1
@test @inferred(Returns(Int)()) === Int
@test @inferred(Returns(Returns(1))()) === Returns(1)
f = @inferred Returns(Int)
@inferred f(1,2)
val = [1,2,3]
@test Returns(val)(1) === val
@test sprint(show, Returns(1.0)) == "Returns{Float64}(1.0)"
illtype = Vector{Core.TypeVar(:T)}
@test Returns(illtype) == Returns{DataType}(illtype)
end
@testset "<= (issue #46327)" begin
struct A46327 <: Real end
Base.:(==)(::A46327, ::A46327) = false
Base.:(<)(::A46327, ::A46327) = false
@test !(A46327() <= A46327())
struct B46327 <: Real end
Base.:(==)(::B46327, ::B46327) = true
Base.:(<)(::B46327, ::B46327) = false
@test B46327() <= B46327()
end
@testset "inference for `x in itr::Tuple`" begin
# concrete evaluation
@test Core.Compiler.is_foldable(Base.infer_effects(in, (Int,Tuple{Int,Int,Int})))
@test Core.Compiler.is_foldable(Base.infer_effects(in, (Char,Tuple{Char,Char,Char})))
for i = (1,2,3)
@testset let i = i
@test @eval Base.return_types() do
Val($i in (1,2,3))
end |> only == Val{true}
end
end
@test Base.infer_return_type() do
Val(4 in (1,2,3))
end == Val{false}
@test Base.infer_return_type() do
Val('1' in ('1','2','3'))
end == Val{true}
# constant propagation
@test Base.infer_return_type((Int,Int)) do x, y
Val(1 in (x,2,y))
end >: Val{true}
@test Base.infer_return_type((Int,Int)) do x, y
Val(2 in (x,2,y))
end == Val{true}
# should use the loop implementation given large tuples to avoid inference blowup
let t = ntuple(x->'A', 10000);
@test Base.infer_return_type(in, (Char,typeof(t))) == Bool
end
end