From c965784fbe962720cca44da0ee6c5b26905de333 Mon Sep 17 00:00:00 2001 From: hzarei4 Date: Tue, 11 Jun 2024 14:18:30 +0200 Subject: [PATCH] added type modification --- src/TestImages.jl | 30 ++++++++++-------------------- 1 file changed, 10 insertions(+), 20 deletions(-) diff --git a/src/TestImages.jl b/src/TestImages.jl index d6882b4..0dfd374 100644 --- a/src/TestImages.jl +++ b/src/TestImages.jl @@ -199,7 +199,7 @@ MRI version [2] is calculated. [3] Jain, Anil K. Fundamentals of digital image processing. _Prentice-Hall, Inc._, (1989): 439. """ -function shepp_logan(N::Int, M::Int, O::Int; high_contrast::Bool=true, highContrast=nothing) +function shepp_logan(::Type{T}, N::Int, M::Int, O::Int; high_contrast::Bool=true, highContrast=nothing) where {T} #println("shepp_logan function called") if !isnothing(highContrast) # compatbitity to Images.shepp_logan @@ -235,17 +235,6 @@ function shepp_logan(N::Int, M::Int, O::Int; high_contrast::Bool=true, highContr θ = (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) ψ = (0.0 , 0.0 , 10.0 , 10.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) - function _ellipse(dx, dy, a, b, sin_ϕ, cos_ϕ) - tx = cos_ϕ * dx + sin_ϕ * dy - ty = sin_ϕ * dx - cos_ϕ * dy - abs2(tx * b) + abs2(ty * a) < (a * b)^2 - end - function _ellipse(dx, dy, a, b) - # a faster case when ϕ == 0.0 - abs2(dx * b) + abs2(dy * a) < (a * b)^2 - end - - # multiplying the transformation matrix @inline function mat_mul(t::SVector{N, T}, matrix_c::SMatrix{N,N,T})::SVector{N,T} where {N,T} return matrix_c * t end @@ -257,20 +246,20 @@ function shepp_logan(N::Int, M::Int, O::Int; high_contrast::Bool=true, highContr return sum(abs2.(t)) end - P = zeros(Float64, N, M, O) + P = zeros(T, N, M, O) for l = 1:length(ϕ) if ϕ[l] == 0.0 && θ[l] == 0.0 && ψ[l] == 0.0 - # Rotation matrix using Z-Y-Z Euler angles + R = SMatrix{3, 3, Float64}([ - 1.0 0.0 0.0; - 0.0 1.0 0.0; - 0.0 0.0 1.0 + 1.0 0.0 0.0; + 0.0 1.0 0.0; + 0.0 0.0 1.0 ]) else sinϕ, cosϕ = sincosd(ϕ[l]) sinθ, cosθ = sincosd(θ[l]) sinψ, cosψ = sincosd(ψ[l]) - # Rotation matrix using Z-Y-Z Euler angles + R = SMatrix{3, 3, Float64}([ (cosψ*cosϕ-cosθ*sinψ*sinϕ) (cosψ*sinϕ+cosθ*sinψ*cosϕ) (sinψ*sinθ); (-sinψ*cosϕ-cosθ*cosψ*sinϕ) (-sinψ*sinϕ+cosθ*cosψ*cosϕ) (cosψ*sinθ); @@ -282,8 +271,9 @@ function shepp_logan(N::Int, M::Int, O::Int; high_contrast::Bool=true, highContr end return P end -shepp_logan(N::Integer, M::Integer; kwargs...) = shepp_logan(Int(N), Int(M), 1; kwargs...) -shepp_logan(N::Integer; kwargs...) = shepp_logan(Int(N), Int(N), 1; kwargs...) +shepp_logan(N::Integer, M::Integer, O::Integer; kwargs...) = shepp_logan(Float64, Int(N), Int(M), Int(O); kwargs...) +shepp_logan(N::Integer, M::Integer; kwargs...) = shepp_logan(Float64, Int(N), Int(M), 1; kwargs...)[:, :, 1] +shepp_logan(N::Integer; kwargs...) = shepp_logan(Float64, Int(N), Int(N), 1; kwargs...)[:, :, 1] function _precompile_() ccall(:jl_generating_output, Cint, ()) == 1 || return nothing