-
Notifications
You must be signed in to change notification settings - Fork 47
/
conversions.jl
834 lines (638 loc) · 27.9 KB
/
conversions.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
# Conversions
# -----------
#=
`convert(C, c)` might be called as `convert(RGB, c)` or
`convert(RGB{Float32}, c)`.
This is handled in ColorTypes, which calls functions
```
_convert(::Type{Cdest}, ::Type{Odest}, ::Type{Osrc}, c)
_convert(::Type{Cdest}, ::Type{Odest}, ::Type{Osrc}, c, alpha)
```
Here are the argument types:
- `Cdest` may be any concrete `Colorant{T,N}` type. For parametric Color types
it _always_ has the desired element type (e.g., `Float32`), so it's safe to
dispatch on `Cdest <: Colorant{T}`.
- `Odest` and `Osrc` are opaque `Color` subtypes, i.e., things like `RGB` or
`HSV`. They have no element type.
- `c` is the `Colorant` object you wish to convert.
- `alpha`, if present, is a user-supplied alpha value (to be used in place of
any default alpha or alpha present in `c`).
The original motivation for this arrangement was that Julia "did not" support
"triangular dispatch", e.g.,
```
convert(::Type{C{T}}, c) where {C, T}
```
On Julia v0.6 or later, parameter constraints can refer to previous parameters.
Threfore, we can use:
```
convert(::Type{C}, c) where {T, C <: Colorant{T}}
```
However, the example above does not match `convert(RGB, c)`. Also, we should
catch all the various alpha variants (e.g. `ARGB`/`RGBA` with/without element
type).
The various arguments of `_convert` "peel off" element types (or guarantee them)
so that comparisons may be made via dispatch. Therefore, this arrangement is
still helpful.
Note that ColorTypes handles the cases where `Odest == Osrc`, or they are both
subtypes of `AbstractRGB` or `AbstractGray`. Therefore, here we only have to
deal with conversions between different spaces.
=#
function ColorTypes._convert(::Type{Cdest}, ::Type{Odest}, ::Type{Osrc}, p, alpha=alpha(p)) where {Cdest<:TransparentColor,Odest,Osrc}
# Convert the base color
c = cnvt(color_type(Cdest), color(p))
# Append the alpha
ColorTypes._convert(Cdest, Odest, Odest, c, alpha)
end
ColorTypes._convert(::Type{Cdest}, ::Type{Odest}, ::Type{Osrc}, c) where {Cdest<:Color,Odest,Osrc} = cnvt(Cdest, c)
# with the whitepoint `wp` as the third argument
convert(::Type{XYZ}, c, wp::XYZ) = cnvt(XYZ{eltype(wp)}, c, wp)
convert(::Type{Lab}, c, wp::XYZ) = cnvt(Lab{eltype(wp)}, c, wp)
convert(::Type{Luv}, c, wp::XYZ) = cnvt(Luv{eltype(wp)}, c, wp)
convert(::Type{XYZ{T}}, c, wp::XYZ) where {T} = cnvt(XYZ{T}, c, wp)
convert(::Type{Lab{T}}, c, wp::XYZ) where {T} = cnvt(Lab{T}, c, wp)
convert(::Type{Luv{T}}, c, wp::XYZ) where {T} = cnvt(Luv{T}, c, wp)
# FIXME: inference helpers for LCH <--> RGB conversions
convert(::Type{RGB}, c::Union{LCHab{T}, LCHuv{T}, Oklch{T}}) where {T} = cnvt(RGB{T}, cnvt(XYZ{T}, c))
convert(::Type{RGB{T}}, c::Union{LCHab{T}, LCHuv{T}, Oklch{T}}) where {T} = cnvt(RGB{T}, cnvt(XYZ{T}, c))
convert(::Type{Lab{T}}, c::RGB{T}) where {T} = cnvt(Lab{T}, cnvt(XYZ{T}, c))
convert(::Type{Luv{T}}, c::RGB{T}) where {T} = cnvt(Luv{T}, cnvt(XYZ{T}, c))
convert(::Type{Oklab{T}}, c::RGB{T}) where {T} = cnvt(Oklab{T}, cnvt(XYZ{T}, c))
# Fallback to catch undefined operations
cnvt(::Type{C}, c::TransparentColor) where {C<:Color} = cnvt(C, color(c))
cnvt(::Type{C}, c) where {C} = convert(C, convert(RGB{eltype(C)}, c)::RGB{eltype(C)})
# Conversions from grayscale
# --------------------------
function ColorTypes._convert(::Type{Cdest}, ::Type{O}, ::Type{O}, g) where {Cdest<:Color,O<:AbstractGray}
cnvt(Cdest, g)
end
function ColorTypes._convert(::Type{Cdest}, ::Type{Odest}, ::Type{Osrc}, g) where {Cdest<:Color,Odest,Osrc<:AbstractGray}
cnvt(Cdest, convert(RGB{eltype(Cdest)}, g))
end
# Everything to RGB
# -----------------
correct_gamut(c::CV) where {CV<:AbstractRGB} = CV(clamp01(red(c)), clamp01(green(c)), clamp01(blue(c)))
correct_gamut(c::CV) where {T<:Union{N0f8,N0f16,N0f32,N0f64},
CV<:Union{AbstractRGB{T},TransparentRGB{T}}} = c
correct_gamut(c::CV) where {CV<:TransparentRGB} =
CV(clamp01(red(c)), clamp01(green(c)), clamp01(blue(c)), clamp01(alpha(c))) # for `hex`
@inline function srgb_compand(v::T) where T
F = typeof(0.5f0v) === Float32 ? Float32 : promote_type(Float64, T)
vf = F(v)
vc = @fastmath max(vf, F(0.0031308))
# `pow5_12` is an optimized function to get `v^(1/2.4)`
vf > F(0.0031308) ? muladd(F(1.055), F(pow5_12(vc)), F(-0.055)) : F(12.92) * vf
end
function _hsx_to_rgb(im::UInt8, v, n, m)
#=
if hue < 60; im = 0b000001 # ---------+
elseif hue < 120; im = 0b000010 # --------+|
elseif hue < 180; im = 0b000100 # -------+||
elseif hue < 240; im = 0b001000 # ------+|||
elseif hue < 300; im = 0b010000 # -----+||||
else ; im = 0b100000 # ----+|||||
end # ||||||
(hue < 60 || hue >= 300) === ((im & 0b100001) != 0x0)
=#
r = ifelse((im & 0b100001) == 0x0, ifelse((im & 0b010010) == 0x0, m, n), v)
g = ifelse((im & 0b000110) == 0x0, ifelse((im & 0b001001) == 0x0, m, n), v)
b = ifelse((im & 0b011000) == 0x0, ifelse((im & 0b100100) == 0x0, m, n), v)
return (r, g, b)
end
function _hsx_to_rgb(im::UInt8, v::T, n::T, m::T) where T <:Union{Float16, Float32, Float64}
vu, nu, mu = reinterpret.(Unsigned, (v, n, m)) # prompt the compiler to use conditional moves
r = ifelse((im & 0b100001) == 0x0, ifelse((im & 0b010010) == 0x0, mu, nu), vu)
g = ifelse((im & 0b000110) == 0x0, ifelse((im & 0b001001) == 0x0, mu, nu), vu)
b = ifelse((im & 0b011000) == 0x0, ifelse((im & 0b100100) == 0x0, mu, nu), vu)
return reinterpret.(T, (r, g, b))
end
function cnvt(::Type{CV}, c::HSV) where {T, CV<:AbstractRGB{T}}
F = promote_type(T, eltype(c))
h, s, v = div60(F(c.h)), clamp01(F(c.s)), clamp01(F(c.v))
hi = unsafe_trunc(Int32, h) # instead of floor
i = h < 0 ? hi - one(hi) : hi
f = i & one(i) == zero(i) ? 1 - (h - i) : h - i
im = 0x1 << (mod6(UInt8, i) & 0x07)
# use `@fastmath` just to reduce the estimated costs for inlining
@fastmath m = v * (1 - s)
@fastmath n = v * (1 - s * f)
r, g, b = _hsx_to_rgb(im, v, n, m)
T <: FixedPoint && typemax(T) >= 1 ? CV(r % T, g % T, b % T) : CV(r, g, b)
end
function cnvt(::Type{CV}, c::HSL) where {T, CV<:AbstractRGB{T}}
F = promote_type(T, eltype(c))
h, s, l = div60(F(c.h)), clamp01(F(c.s)), clamp01(F(c.l))
a = @fastmath min(l, 1 - l) * s
v = l + a
hi = unsafe_trunc(Int32, h) # instead of floor
i = h < 0 ? hi - one(hi) : hi
f = i & one(i) == zero(i) ? 1 - (h - i) : h - i
im = 0x1 << (mod6(UInt8, i) & 0x07)
# use `@fastmath` just to reduce the estimated costs for inlining
@fastmath m = l - a # v - 2 * a
@fastmath n = v - 2 * a * f
r, g, b = _hsx_to_rgb(im, v, n, m)
T <: FixedPoint && typemax(T) >= 1 ? CV(r % T, g % T, b % T) : CV(r, g, b)
end
function cnvt(::Type{CV}, c::HSI) where {T, CV<:AbstractRGB{T}}
F = promote_type(T, eltype(c))
h, s, i = deg2rad(normalize_hue(F(c.h))), clamp01(F(c.s)), clamp01(F(c.i))
is = i * s
if h < F(2π/3)
@fastmath cosr = cos(h) / cos(F(π/3)-h)
r0, g0, b0 = muladd(is, cosr, i), muladd(is, 1-cosr, i), i - is
elseif h < F(4π/3)
@fastmath cosr = cos(h-F(2π/3)) / cos(F(π)-h)
r0, g0, b0 = i - is, muladd(is, cosr, i), muladd(is, 1-cosr, i)
else
@fastmath cosr = cos(h-F(4π/3)) / cos(F(5π/3)-h)
r0, g0, b0 = muladd(is, 1-cosr, i), i - is, muladd(is, cosr, i)
end
r, g, b = min(r0, oneunit(F)), min(g0, oneunit(F)), min(b0, oneunit(F))
T <: FixedPoint && typemax(T) >= 1 ? CV(r % T, g % T, b % T) : CV(r, g, b)
end
# the following matrix is based on the sRGB color primaries in `xy` and D65 whitepoint in `XYZ`
const M_XYZ2RGB = Mat3x3([ 3.2404541621141054 -1.5371385127977166 -0.4985314095560162
-0.9692660305051868 1.8760108454466942 0.04155601753034984
0.05564343095911469 -0.20402591351675387 1.0572251882231791 ])
function xyz_to_linear_rgb(c::XYZ{T}) where T
@mul3x3 RGB M_XYZ2RGB c.x c.y c.z
end
function cnvt(::Type{CV}, c::XYZ) where CV<:AbstractRGB
rgb = xyz_to_linear_rgb(c)
CV(clamp01(srgb_compand(rgb.r)),
clamp01(srgb_compand(rgb.g)),
clamp01(srgb_compand(rgb.b)))
end
const M_YIQ2RGB = Mat3x3([1.0 0.9563 0.621
1.0 -0.2721 -0.6474
1.0 -1.107 1.7046 ])
function cnvt(::Type{CV}, c::YIQ) where CV<:AbstractRGB
cc = correct_gamut(c)
rgb = @mul3x3 RGB M_YIQ2RGB cc.y cc.i cc.q
CV(clamp01(rgb.r), clamp01(rgb.g), clamp01(rgb.b))
end
# FIXME
function cnvt(::Type{CV}, c::YCbCr) where CV<:AbstractRGB
cc = correct_gamut(c)
ny = cc.y - 16
ncb = cc.cb - 128
ncr = cc.cr - 128
CV(clamp01(0.004567ny - 1.39135e-7ncb + 0.0062586ncr),
clamp01(0.004567ny - 0.00153646ncb - 0.0031884ncr),
clamp01(0.004567ny + 0.00791058ncb - 2.79201e-7ncr))
end
# To avoid stack overflow, the source types which do not support direct or
# indirect conversion to RGB should be rejected.
cnvt(::Type{CV}, c::Union{LMS, xyY}) where {CV<:AbstractRGB} = cnvt(CV, cnvt(XYZ{eltype(c)}, c))
cnvt(::Type{CV}, c::Union{Lab, Luv, Oklab, LCHab, LCHuv, Oklch}) where {CV<:AbstractRGB} = cnvt(CV, cnvt(XYZ{eltype(c)}, c))
cnvt(::Type{CV}, c::Union{DIN99d, DIN99o, DIN99}) where {CV<:AbstractRGB} = cnvt(CV, cnvt(XYZ{eltype(c)}, c))
@noinline function cnvt(::Type{CV}, @nospecialize(c::Color)) where {CV<:AbstractRGB}
error("No conversion of ", c, " to ", CV, " has been defined")
end
# AbstractGray --> AbstractRGB conversions are implemented in ColorTypes.jl
# Everything to HSV
# -----------------
function cnvt(::Type{HSV{T}}, c::AbstractRGB) where T
F = promote_type(T, eltype(c))
r, g, b = F.((red(c), green(c), blue(c)))
c_min = @fastmath min(min(r, g), b)
c_max = @fastmath max(max(r, g), b)
s0 = c_max - c_min
s0 == zero(F) && return HSV{T}(zero(T), zero(T), T(c_max))
s = @fastmath s0 / c_max
# In general, it is dangerous to compare floating point numbers with `===`.
diff = ifelse(c_max === r, g - b, ifelse(c_max === g, b - r, r - g))
ofs = ifelse(c_max === r, (g < b)*F(360), ifelse(c_max === g, F(120), F(240)))
h0 = @fastmath diff * F(60) / s0
HSV{T}(h0 + ofs, s, c_max)
end
cnvt(::Type{HSV{T}}, c::Color) where {T} = cnvt(HSV{T}, convert(RGB{T}, c)::RGB{T})
# Everything to HSL
# -----------------
function cnvt(::Type{HSL{T}}, c::AbstractRGB) where T
F = promote_type(T, eltype(c))
r, g, b = F(red(c)), F(green(c)), F(blue(c))
c_min = @fastmath min(min(r, g), b)
c_max = @fastmath max(max(r, g), b)
l0 = c_max + c_min
s0 = c_max - c_min
l = l0 * F(0.5)
s0 == zero(F) && return HSL{T}(zero(T), zero(T), T(l))
s = @fastmath s0 / min(l0, F(2) - l0)
# In general, it is dangerous to compare floating point numbers with `===`.
diff = ifelse(c_max === r, g - b, ifelse(c_max === g, b - r, r - g))
ofs = ifelse(c_max === r, (g < b)*F(360), ifelse(c_max === g, F(120), F(240)))
h0 = @fastmath diff * F(60) / s0
HSL{T}(h0 + ofs, s, l)
end
cnvt(::Type{HSL{T}}, c::Color) where {T} = cnvt(HSL{T}, convert(RGB{T}, c)::RGB{T})
# Everything to HSI
# -----------------
# Since acosd() is slow, the following is "inline-worthy".
@inline function cnvt(::Type{HSI{T}}, c::AbstractRGB) where T
rgb = correct_gamut(c)
F = promote_type(T, eltype(c))
r, g, b = F(red(rgb)), F(green(rgb)), F(blue(rgb))
dnorm = @fastmath sqrt(((r-g)^2 + (r-b)^2 + (g-b)^2) * F(0.5))
isum = r + g + b
i = isum / F(3)
dnorm == zero(F) && return HSI{T}(T(90), zero(T), T(i))
val = muladd(g + b, F(-0.5), r) / dnorm
h = @fastmath acosd(clamp(val, -oneunit(F), oneunit(F)))
m = @fastmath min(min(r, g), b)
s = oneunit(F) - m/i
HSI{T}(b > g ? F(360) - h : h, s, i)
end
cnvt(::Type{HSI{T}}, c::Color) where {T} = cnvt(HSI{T}, convert(RGB{T}, c)::RGB{T})
# Everything to XYZ
# -----------------
@inline function invert_srgb_compand(v::T) where T
F = typeof(0.5f0v) === Float32 ? Float32 : promote_type(Float64, T)
vf = F(v)
# `pow12_5` is an optimized function to get `x^2.4`
vf > F(0.04045) ? pow12_5(muladd(F(1000/1055), vf, F(55/1055))) : F(100/1292) * vf
end
# lookup table for `N0f8` (the extra two elements are for `Float32` splines)
const invert_srgb_compand_n0f8 = Float32[invert_srgb_compand(v/255.0) for v = 0:257]
function invert_srgb_compand(v::N0f8)
@inbounds invert_srgb_compand_n0f8[reinterpret(v) + 1]
end
function invert_srgb_compand(v::Float32)
i = unsafe_trunc(Int32, v * 255)
(i < 13 || i > 255) && return Float32(invert_srgb_compand(Float64(v)))
@inbounds y = view(invert_srgb_compand_n0f8, i:i+3)
dv = v * 255.0f0 - i
dv == 0.0f0 && @inbounds return y[2]
if v < 0.38857287f0
return @fastmath(y[2]+0.5f0*dv*((-2/3f0*y[1]- y[2])+(2y[3]-1/3f0*y[4])+
dv*(( y[1]-2y[2])+ y[3]-
dv*(( 1/3f0*y[1]- y[2])+( y[3]-1/3f0*y[4]) ))))
else
return @fastmath(y[2]+0.5f0*dv*((4y[3]-3y[2])-y[4]+dv*((y[4]-y[3])+(y[2]-y[3]))))
end
end
# the following matrix is based on the sRGB color primaries in `xy` and D65 whitepoint in `XYZ`
const M_RGB2XYZ = Mat3x3([0.4124564390896921 0.357576077643909 0.18043748326639894
0.21267285140562248 0.715152155287818 0.07217499330655958
0.019333895582329317 0.119192025881303 0.9503040785363677 ])
function linear_rgb_to_xyz(c::AbstractRGB{T}) where T
@mul3x3 XYZ M_RGB2XYZ red(c) green(c) blue(c)
end
function cnvt(::Type{XYZ{T}}, c::AbstractRGB) where T
r = invert_srgb_compand(red(c))
g = invert_srgb_compand(green(c))
b = invert_srgb_compand(blue(c))
@mul3x3 XYZ{T} M_RGB2XYZ r g b
end
function cnvt(::Type{XYZ{T}}, c::xyY) where T
X = c.Y*c.x/c.y
Z = c.Y*(1-c.x-c.y)/c.y
XYZ{T}(X, c.Y, Z)
end
const xyz_epsilon = 216 / 24389 # (6/29)^3
const xyz_kappa = 24389 / 27 # (29/6)^3*8
const xyz_kappa_inv = 27 / 24389
function lab2xyz(::Type{XYZ{T}}, c) where T
F = promote_type(T, eltype(c))
fy1 = c.l * F(0x1p-7)
fy2 = muladd(c.l, F(3 / 3712), F(16 / 116))
fy = fy1 + fy2 # (c.l + 16) / 116
fx = fy1 + muladd(c.a, F( 0x1p-9), muladd(c.a, F(3 / 64000), fy2)) # fy + c.a / 500
fz = fy1 + muladd(c.b, F(-0x1p-8), muladd(c.b, F(-7 / 6400), fy2)) # fy - c.b / 200
fx3 = fx^3
fy3 = fy^3
fz3 = fz^3
epsilon = oftype(fx3, xyz_epsilon)
kappa_inv = oftype(fx3, xyz_kappa_inv)
x = fx3 > epsilon ? fx3 : muladd(116, fx, -16) * kappa_inv
y = fy3 > epsilon ? fy3 : c.l * kappa_inv
z = fz3 > epsilon ? fz3 : muladd(116, fz, -16) * kappa_inv
return XYZ{T}(x, y, z)
end
function cnvt(::Type{XYZ{T}}, c::Lab) where T
xyz = lab2xyz(XYZ{T}, c)
XYZ{T}(xyz.x * T(WP_DEFAULT.x), xyz.y * T(WP_DEFAULT.y), xyz.z * T(WP_DEFAULT.z))
end
function cnvt(::Type{XYZ{T}}, c::Lab, wp::XYZ) where T
xyz = lab2xyz(XYZ{T}, c)
XYZ{T}(xyz.x * T(wp.x), xyz.y * T(wp.y), xyz.z * T(wp.z))
end
function xyz_to_uv(c::XYZ)
F = typeof(4c.x / oneunit(c.x))
d = c.x + 15c.y + 3c.z
d == zero(d) && return (zero(F), zero(F))
return (4c.x, 9c.y) ./ d # (u, v)
end
@inline function luv2xyz(::Type{XYZ{T}}, c, y_wp::F, uv_wp::Tuple{F, F}) where {T, F}
c.l == zero(c.l) && return XYZ{T}(zero(T), zero(T), zero(T))
ls = c.l * F(xyz_kappa_inv)
clc = @fastmath max(F(c.l), F(8))
lc = muladd(clc, F(0x1p-7), muladd(clc, F(3 / 3712), F(16 / 116)))^3 # (c.l + 16) / 116)^3
y = y_wp * ifelse(c.l > 8, lc, ls)
u, v = (c.u, c.v) ./ (13c.l) .+ uv_wp
ys = F(0.25) * y / v
x = ys * 9u
z = ys * (12 - 3u - 20v)
XYZ{T}(x, y, z)
end
function cnvt(::Type{XYZ{T}}, c::Luv) where T
F = promote_type(T, eltype(c))
luv2xyz(XYZ{T}, c, F(WP_DEFAULT.y), F.(xyz_to_uv(WP_DEFAULT)))
end
function cnvt(::Type{XYZ{T}}, c::Luv, wp::XYZ) where T
F = promote_type(T, eltype(c))
luv2xyz(XYZ{T}, c, F(wp.y), F.(xyz_to_uv(wp)))
end
function cnvt(::Type{XYZ{T}}, c::DIN99d) where T
# Go back to C-h space
C = chroma(c)
h = atan(c.b, c.a) - 50π/180
# Intermediate terms
G = (exp(C/22.5)-1)/0.06
f, ee = G .* sincos(h)
l = (exp(c.l/325.221)-1)/0.0036
# a = ee*cosd(50) - f/1.14*sind(50)
a = ee*0.6427876096865394 - f/1.14*0.766044443118978
# b = ee*sind(50) - f/1.14*cosd(50)
b = ee*0.766044443118978 + f/1.14*0.6427876096865394
adj = convert(XYZ, Lab(l, a, b))
XYZ{T}((adj.x + 0.12*adj.z)/1.12, adj.y, adj.z)
end
function cnvt(::Type{XYZ{T}}, c::LMS) where T
@mul3x3 XYZ{T} CAT02_INV c.l c.m c.s
end
function cnvt(::Type{XYZ{T}}, c::Oklab) where T
lmsp = @mul3x3 LMS{T} M_OKLMSP2OKLAB_INV c.l c.a c.b
@mul3x3 XYZ{T} M_XYZ2OKLMS_INV lmsp.l^3 lmsp.m^3 lmsp.s^3
end
cnvt(::Type{XYZ{T}}, c::Oklch) where {T} = cnvt(XYZ{T}, cnvt(Oklab{T}, c))
cnvt(::Type{XYZ{T}}, c::Union{LCHab, DIN99, DIN99o}) where {T} = cnvt(XYZ{T}, cnvt(Lab{T}, c))
cnvt(::Type{XYZ{T}}, c::LCHuv) where {T} = cnvt(XYZ{T}, cnvt(Luv{T}, c))
cnvt(::Type{XYZ{T}}, c::Color) where {T} = cnvt(XYZ{T}, convert(RGB{T}, c)::RGB{T})
# Everything to xyY
# -----------------
function cnvt(::Type{xyY{T}}, c::XYZ) where T
x = c.x/(c.x + c.y + c.z)
y = c.y/(c.x + c.y + c.z)
xyY{T}(x, y, oftype(x, c.y))
end
cnvt(::Type{xyY{T}}, c::Color) where {T} = cnvt(xyY{T}, convert(XYZ{T}, c)::XYZ{T})
# Everything to Lab
# -----------------
@inline function fxyz2lab(v)
ka = oftype(v, 841 / 108) # (29/6)^2 / 3 = xyz_kappa / 116
kb = oftype(v, 16 / 116) # 4/29
vc = @fastmath max(v, oftype(v, xyz_epsilon))
@fastmath min(cbrt01(vc), muladd(ka, v, kb))
end
@inline function xyz2lab(::Type{Lab{T}}, c::XYZ) where T
f = XYZ(fxyz2lab(c.x), fxyz2lab(c.y), fxyz2lab(c.z)) # mapc(fxyz2lab, c)
Lab{T}(116f.y - 16, 500(f.x - f.y), 200(f.y - f.z))
end
function cnvt(::Type{Lab{T}}, c::XYZ) where T
wp = WP_DEFAULT
F = promote_type(T, eltype(c))
xyz2lab(Lab{T}, XYZ(c.x * F(1 / wp.x), c.y * F(1 / wp.y), c.z * F(1 / wp.z)))
end
function cnvt(::Type{Lab{T}}, c::XYZ, wp::XYZ) where T
F = promote_type(T, eltype(c))
xyz2lab(Lab{T}, XYZ(c.x / F(wp.x), c.y / F(wp.y), c.z / F(wp.z)))
end
function cnvt(::Type{Lab{T}}, c::LCHab) where T
Lab{T}(c.l, polar_to_cartesian(c.c, c.h)...)
end
function cnvt(::Type{Lab{T}}, c::DIN99) where T
# We assume the adjustment parameters are always 1; the standard recommends
# that they not be changed from these values.
kch = 1
ke = 1
# Calculate Chroma (C99) in the DIN99 space
cc = chroma(c)
# Temporary variable for chroma
g = (exp(0.045*cc*kch*ke)-1)/0.045
# Temporary redness
ee = cc > 0 ? g * c.a / cc : zero(g)
# Temporary yellowness
f = cc > 0 ? g * c.b / cc : zero(g)
# CIELAB a*b*
# ciea = ee*cosd(16) - (f/0.7)*sind(16)
ciea = ee*0.9612616959383189 - (f/0.7)*0.27563735581699916
# cieb = ee*sind(16) + (f/0.7)*cosd(16)
cieb = ee*0.27563735581699916 + (f/0.7)*0.9612616959383189
# CIELAB L*
ciel = (exp(c.l*ke/105.51)-1)/0.0158
Lab{T}(ciel, ciea, cieb)
end
function cnvt(::Type{Lab{T}}, c::DIN99o) where T
# We assume the adjustment parameters are always 1; the standard recommends
# that they not be changed from these values.
kch = 1
ke = 1
# Calculate Chroma (C99) in the DIN99o space
co = chroma(c)
# hue angle h99o
h = atan(c.b, c.a) - 26π/180
# revert logarithmic chroma compression
g = (exp(co*kch*ke/23.0)-1)/0.075
# Temporary yellowness and redness
fo, eo = g .* sincos(h)
# CIELAB a*b* (revert b* axis compression)
# ciea = eo*cosd(26) - (fo/0.83)*sind(26)
ciea = eo*0.898794046299167 - (fo/0.83)*0.4383711467890774
# cieb = eo*sind(26) + (fo/0.83)*cosd(26)
cieb = eo*0.4383711467890774 + (fo/0.83)*0.898794046299167
# CIELAB L* (revert logarithmic lightness compression)
ciel = (exp(c.l*ke/303.67)-1)/0.0039
Lab{T}(ciel, ciea, cieb)
end
cnvt(::Type{Lab{T}}, c::Color) where {T} = cnvt(Lab{T}, convert(XYZ{T}, c)::XYZ{T})
# Everything to Luv
# -----------------
@inline function xyz2luv(::Type{Luv{T}}, c::XYZ, y::F, uv_wp::Tuple{F, F}) where {T, F}
yc = @fastmath max(y, F(xyz_epsilon))
l = @fastmath min(muladd(116, cbrt01(yc), -16), F(xyz_kappa) * y)
uv = (13 * l) .* (xyz_to_uv(c) .- uv_wp)
Luv{T}(l, uv...)
end
function cnvt(::Type{Luv{T}}, c::XYZ) where T
F = promote_type(T, eltype(c))
y = c.y * F(1 / WP_DEFAULT.y)
xyz2luv(Luv{T}, c, F(y), F.(xyz_to_uv(WP_DEFAULT)))
end
function cnvt(::Type{Luv{T}}, c::XYZ, wp::XYZ) where T
F = promote_type(T, eltype(c))
y = c.y / F(wp.y)
xyz2luv(Luv{T}, c, F(y), F.(xyz_to_uv(wp)))
end
function cnvt(::Type{Luv{T}}, c::LCHuv) where T
Luv{T}(c.l, polar_to_cartesian(c.c, c.h)...)
end
cnvt(::Type{Luv{T}}, c::Color) where {T} = cnvt(Luv{T}, convert(XYZ{T}, c)::XYZ{T})
# Everything to LCHuv
# -------------------
function cnvt(::Type{LCHuv{T}}, c::Luv) where T
LCHuv{T}(c.l, chroma(c), hue(c))
end
cnvt(::Type{LCHuv{T}}, c::Color) where {T} = cnvt(LCHuv{T}, convert(Luv{T}, c)::Luv{T})
# Everything to LCHab
# -------------------
function cnvt(::Type{LCHab{T}}, c::Lab) where T
LCHab{T}(c.l, chroma(c), hue(c))
end
cnvt(::Type{LCHab{T}}, c::Color) where {T} = cnvt(LCHab{T}, convert(Lab{T}, c)::Lab{T})
# Everything to Oklab
# -------------------
# Matrices as specified in https://bottosson.github.io/posts/oklab/
const M_XYZ2OKLMS = Mat3x3([0.8189330101 0.3618667424 -0.1288597137
0.0329845436 0.9293118715 0.0361456387
0.0482003018 0.2643662691 0.6338517070])
const M_XYZ2OKLMS_INV = Mat3x3(inv(Float64.(M_XYZ2OKLMS)))
const M_OKLMSP2OKLAB = Mat3x3([0.2104542553 0.7936177850 -0.0040720468
1.9779984951 -2.4285922050 0.4505937099
0.0259040371 0.7827717662 -0.8086757660])
const M_OKLMSP2OKLAB_INV = Mat3x3(inv(Float64.(M_OKLMSP2OKLAB)))
function cnvt(::Type{Oklab{T}}, c::XYZ) where T
lms = @mul3x3 LMS{T} M_XYZ2OKLMS c.x c.y c.z
@mul3x3 Oklab{T} M_OKLMSP2OKLAB cbrt(lms.l) cbrt(lms.m) cbrt(lms.s)
end
function cnvt(::Type{Oklab{T}}, c::Oklch) where T
Oklab{T}(c.l, polar_to_cartesian(c.c, c.h)...)
end
cnvt(::Type{Oklab{T}}, c::Color) where {T} = cnvt(Oklab{T}, convert(XYZ{T}, c)::XYZ{T})
# Everything to Oklch
# -------------------
function cnvt(::Type{Oklch{T}}, c::Oklab) where T
Oklch{T}(c.l, chroma(c), hue(c))
end
cnvt(::Type{Oklch{T}}, c::Color) where {T} = cnvt(Oklch{T}, convert(Oklab{T}, c)::Oklab{T})
# Everything to DIN99
# -------------------
function cnvt(::Type{DIN99{T}}, c::Lab) where T
# We assume the adjustment parameters are always 1; the standard recommends
# that they not be changed from these values.
kch = 1
ke = 1
# Calculate DIN99 L
l99 = (1/ke)*105.51*log(1+0.0158*c.l)
# Temporary value for redness and yellowness
# ee = c.a*cosd(16) + c.b*sind(16)
ee = c.a*0.9612616959383189 + c.b*0.27563735581699916
# f = -0.7*c.a*sind(16) + 0.7*c.b*cosd(16)
f = -0.7*c.a*0.27563735581699916 + 0.7*c.b*0.9612616959383189
# Temporary value for chroma
g = sqrt(ee^2 + f^2)
# DIN99 chroma
cc = log(1+0.045*g)/(0.045*kch*ke)
# DIN99 chromaticities
a99 = g > 0 ? convert(T, cc / g * ee) : zero(T)
b99 = g > 0 ? convert(T, cc / g * f ) : zero(T)
DIN99{T}(l99, a99, b99)
end
cnvt(::Type{DIN99{T}}, c::Color) where {T} = cnvt(DIN99{T}, convert(Lab{T}, c)::Lab{T})
# Everything to DIN99d
# --------------------
function cnvt(::Type{DIN99d{T}}, c::XYZ{T}) where T
# Apply tristimulus-space correction term
adj_c = XYZ(1.12*c.x - 0.12*c.z, c.y, c.z)
# Apply L*a*b*-space correction
lab = convert(Lab, adj_c)
adj_L = 325.221*log(1+0.0036*lab.l)
# Calculate intermediate parameters
# ee = lab.a*cosd(50) + lab.b*sind(50)
ee = lab.a*0.6427876096865394 + lab.b*0.766044443118978
# f = 1.14*(lab.b*cosd(50) - lab.a*sind(50))
f = 1.14*(lab.b*0.6427876096865394 - lab.a*0.766044443118978)
G = sqrt(ee^2+f^2)
# Calculate hue/chroma
C = 22.5*log(1+0.06*G)
h = atan(f, ee) + 50π/180
b99, a99 = C .* sincos(h)
DIN99d{T}(adj_L, a99, b99)
end
cnvt(::Type{DIN99d{T}}, c::Color) where {T} = cnvt(DIN99d{T}, convert(XYZ{T}, c)::XYZ{T})
# Everything to DIN99o
# -------------------
function cnvt(::Type{DIN99o{T}}, c::Lab) where T
# We assume the adjustment parameters are always 1; the standard recommends
# that they not be changed from these values.
kch = 1
ke = 1
# Calculate DIN99o L (logarithmic compression)
l99 = 303.67/ke*log(1+0.0039*c.l)
# Temporary value for redness and yellowness
# including rotation by 26°
# eo = c.a*cosd(26) + c.b*sind(26)
eo = c.a*0.898794046299167 + c.b*0.4383711467890774
# compression along the yellowness (blue-yellow) axis
# fo = 0.83 * (c.b*cosd(26) - c.a*sind(26))
fo = 0.83 * (c.b*0.898794046299167 - c.a*0.4383711467890774)
# Temporary value for chroma
go = sqrt(eo^2 + fo^2)
h = atan(fo, eo) + 26π/180
# DIN99o chroma (logarithmic compression)
cc = 23.0*log(1+0.075*go)/(kch*ke)
# DIN99o chromaticities
b99, a99 = cc .* sincos(h)
DIN99o{T}(l99, a99, b99)
end
cnvt(::Type{DIN99o{T}}, c::Color) where {T} = cnvt(DIN99o{T}, convert(Lab{T}, c)::Lab{T})
# Everything to LMS
# -----------------
# Chromatic adaptation from CIECAM97s
const CAT97s = Mat3x3([ 0.8562 0.3372 -0.1934
-0.8360 1.8327 0.0033
0.0357 -0.0469 1.0112 ])
const CAT97s_INV = Mat3x3(inv(Float64.(CAT97s)))
# Chromatic adaptation from CIECAM02
const CAT02 = Mat3x3([ 0.7328 0.4296 -0.1624
-0.7036 1.6975 0.0061
0.0030 0.0136 0.9834 ])
const CAT02_INV = Mat3x3(inv(Float64.(CAT02)))
function cnvt(::Type{LMS{T}}, c::XYZ) where T
@mul3x3 LMS{T} CAT02 c.x c.y c.z
end
cnvt(::Type{LMS{T}}, c::Color) where {T} = cnvt(LMS{T}, convert(XYZ{T}, c)::XYZ{T})
# Everything to YIQ
# -----------------
correct_gamut(c::YIQ{T}) where {T} = YIQ{T}(clamp(c.y, zero(T), one(T)),
clamp(c.i, convert(T,-0.595716), convert(T,0.595716)),
clamp(c.q, convert(T,-0.522591), convert(T,0.522591)))
const M_RGB2YIQ = Mat3x3([0.299 0.587 0.114
0.595716 -0.274453 -0.321263
0.211456 -0.522591 0.311135 ])
function cnvt(::Type{YIQ{T}}, c::AbstractRGB) where T
rgb = correct_gamut(c)
@mul3x3 YIQ{T} M_RGB2YIQ red(rgb) green(rgb) blue(rgb)
end
cnvt(::Type{YIQ{T}}, c::Color) where {T} = cnvt(YIQ{T}, convert(RGB{T}, c)::RGB{T})
# Everything to YCbCr
# -------------------
# FIXME
correct_gamut(c::YCbCr{T}) where {T} = YCbCr{T}(clamp(c.y, convert(T,16), convert(T,235)),
clamp(c.cb, convert(T,16), convert(T,240)),
clamp(c.cr, convert(T,16), convert(T,240)))
# FIXME
function cnvt(::Type{YCbCr{T}}, c::AbstractRGB) where T
rgb = correct_gamut(c)
YCbCr{T}(16+65.481*red(rgb)+128.553*green(rgb)+24.966*blue(rgb),
128-37.797*red(rgb)-74.203*green(rgb)+112*blue(rgb),
128+112*red(rgb)-93.786*green(rgb)-18.214*blue(rgb))
end
cnvt(::Type{YCbCr{T}}, c::Color) where {T} = cnvt(YCbCr{T}, convert(RGB{T}, c)::RGB{T})
# To Gray
# -------
# AbstractGray --> AbstractRGB conversions are implemented in ColorTypes.jl, but
# AbstractRGB --> AbstractGray conversions should be implemented here.
# Rec 601 luma conversion
function cnvt(::Type{G}, x::AbstractRGB{T}) where {G<:AbstractGray,T<:Normed}
TU, Tf = FixedPointNumbers.rawtype(T), floattype(T)
if sizeof(TU) < sizeof(UInt)
val = Tf(0.001)*(299*reinterpret(red(x)) + 587*reinterpret(green(x)) + 114*reinterpret(blue(x)))
else
val = Tf(0.299)*reinterpret(red(x)) + Tf(0.587)*reinterpret(green(x)) + Tf(0.114)*reinterpret(blue(x))
end
return G(reinterpret(T, round(TU, val)))
end
cnvt(::Type{G}, x::AbstractRGB) where {G<:AbstractGray} =
G(0.299f0*red(x) + 0.587f0*green(x) + 0.114f0*blue(x))
cnvt(::Type{G}, x::Color) where {G<:AbstractGray} = convert(G, convert(RGB, x))