-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.6.0-DEV-7d3dac44dc.log
92 lines (91 loc) · 15.5 KB
/
1.6.0-DEV-7d3dac44dc.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
Julia Version 1.6.0-DEV.1148
Commit 7d3dac44dc (2020-10-06 21:26 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-10.0.1 (ORCJIT, znver2)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
Resolving package versions...
Installed AbstractTensors ──── v0.6.3
Installed AbstractLattices ─── v0.2.1
Installed ComputedFieldTypes ─ v0.1.0
Installed Leibniz ──────────── v0.1.2
Installed Combinatorics ────── v1.0.2
Installed Adapode ──────────── v0.2.6
Installed DirectSum ────────── v0.7.4
Installed Requires ─────────── v1.1.0
Installed Grassmann ────────── v0.7.1
Updating `~/.julia/environments/v1.6/Project.toml`
[0750cfb5] + Adapode v0.2.6
Updating `~/.julia/environments/v1.6/Manifest.toml`
[398f06c4] + AbstractLattices v0.2.1
[a8e43f4a] + AbstractTensors v0.6.3
[0750cfb5] + Adapode v0.2.6
[861a8166] + Combinatorics v1.0.2
[459fdd68] + ComputedFieldTypes v0.1.0
[22fd7b30] + DirectSum v0.7.4
[4df31cd9] + Grassmann v0.7.1
[edad4870] + Leibniz v0.1.2
[ae029012] + Requires v1.1.0
[2a0f44e3] + Base64
[b77e0a4c] + InteractiveUtils
[8f399da3] + Libdl
[37e2e46d] + LinearAlgebra
[56ddb016] + Logging
[d6f4376e] + Markdown
[9a3f8284] + Random
[ea8e919c] + SHA
[9e88b42a] + Serialization
[2f01184e] + SparseArrays
[8dfed614] + Test
[cf7118a7] + UUIDs
Testing Adapode
Status `/tmp/jl_vc249X/Project.toml`
[a8e43f4a] AbstractTensors v0.6.3
[0750cfb5] Adapode v0.2.6
[22fd7b30] DirectSum v0.7.4
[4df31cd9] Grassmann v0.7.1
[37e2e46d] LinearAlgebra
[2f01184e] SparseArrays
[8dfed614] Test
Status `/tmp/jl_vc249X/Manifest.toml`
[398f06c4] AbstractLattices v0.2.1
[a8e43f4a] AbstractTensors v0.6.3
[0750cfb5] Adapode v0.2.6
[861a8166] Combinatorics v1.0.2
[459fdd68] ComputedFieldTypes v0.1.0
[22fd7b30] DirectSum v0.7.4
[4df31cd9] Grassmann v0.7.1
[edad4870] Leibniz v0.1.2
[ae029012] Requires v1.1.0
[2a0f44e3] Base64
[b77e0a4c] InteractiveUtils
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[9a3f8284] Random
[ea8e919c] SHA
[9e88b42a] Serialization
[2f01184e] SparseArrays
[8dfed614] Test
[cf7118a7] UUIDs
Testing Running tests...
Chain{Λ¹⟨××⟩×5, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂], ϵ=0.06250023291538927, α=0.7071080987512746
Chain{Λ¹⟨××⟩×7, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂], ϵ=0.018818515503539437, α=0.5893838184004502
Chain{Λ¹⟨××⟩×9, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂], ϵ=0.00839865087879786, α=0.629579470628305
Chain{Λ¹⟨××⟩×11, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂], ϵ=0.00550525238424658, α=0.7034281299102593
Chain{Λ¹⟨××⟩×15, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂], ϵ=0.0030676861165820396, α=0.5817118039228252
Chain{Λ¹⟨××⟩×21, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂, 15v₁ + 16v₂, 16v₁ + 17v₂, 17v₁ + 18v₂, 18v₁ + 19v₂, 19v₁ + 20v₂, 20v₁ + 21v₂], ϵ=0.0015247027930230827, α=0.6518393283717296
Chain{Λ¹⟨××⟩×31, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂, 15v₁ + 16v₂, 16v₁ + 17v₂, 17v₁ + 18v₂, 18v₁ + 19v₂, 19v₁ + 20v₂, 20v₁ + 21v₂, 21v₁ + 22v₂, 22v₁ + 23v₂, 23v₁ + 24v₂, 24v₁ + 25v₂, 25v₁ + 26v₂, 26v₁ + 27v₂, 27v₁ + 28v₂, 28v₁ + 29v₂, 29v₁ + 30v₂, 30v₁ + 31v₂], ϵ=0.0007629694522278704, α=0.5262081305678569
Chain{Λ¹⟨××⟩×39, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂, 15v₁ + 16v₂, 16v₁ + 17v₂, 17v₁ + 18v₂, 18v₁ + 19v₂, 19v₁ + 20v₂, 20v₁ + 21v₂, 21v₁ + 22v₂, 22v₁ + 23v₂, 23v₁ + 24v₂, 24v₁ + 25v₂, 25v₁ + 26v₂, 26v₁ + 27v₂, 27v₁ + 28v₂, 28v₁ + 29v₂, 29v₁ + 30v₂, 30v₁ + 31v₂, 31v₁ + 32v₂, 32v₁ + 33v₂, 33v₁ + 34v₂, 34v₁ + 35v₂, 35v₁ + 36v₂, 36v₁ + 37v₂, 37v₁ + 38v₂, 38v₁ + 39v₂], ϵ=0.0005020728531669024, α=0.707785471964938
Chain{Λ¹⟨××⟩×57, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂, 15v₁ + 16v₂, 16v₁ + 17v₂, 17v₁ + 18v₂, 18v₁ + 19v₂, 19v₁ + 20v₂, 20v₁ + 21v₂, 21v₁ + 22v₂, 22v₁ + 23v₂, 23v₁ + 24v₂, 24v₁ + 25v₂, 25v₁ + 26v₂, 26v₁ + 27v₂, 27v₁ + 28v₂, 28v₁ + 29v₂, 29v₁ + 30v₂, 30v₁ + 31v₂, 31v₁ + 32v₂, 32v₁ + 33v₂, 33v₁ + 34v₂, 34v₁ + 35v₂, 35v₁ + 36v₂, 36v₁ + 37v₂, 37v₁ + 38v₂, 38v₁ + 39v₂, 39v₁ + 40v₂, 40v₁ + 41v₂, 41v₁ + 42v₂, 42v₁ + 43v₂, 43v₁ + 44v₂, 44v₁ + 45v₂, 45v₁ + 46v₂, 46v₁ + 47v₂, 47v₁ + 48v₂, 48v₁ + 49v₂, 49v₁ + 50v₂, 50v₁ + 51v₂, 51v₁ + 52v₂, 52v₁ + 53v₂, 53v₁ + 54v₂, 54v₁ + 55v₂, 55v₁ + 56v₂, 56v₁ + 57v₂], ϵ=0.00027617145770301505, α=0.5634440797138817
Chain{Λ¹⟨××⟩×73, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂, 15v₁ + 16v₂, 16v₁ + 17v₂, 17v₁ + 18v₂, 18v₁ + 19v₂, 19v₁ + 20v₂, 20v₁ + 21v₂, 21v₁ + 22v₂, 22v₁ + 23v₂, 23v₁ + 24v₂, 24v₁ + 25v₂, 25v₁ + 26v₂, 26v₁ + 27v₂, 27v₁ + 28v₂, 28v₁ + 29v₂, 29v₁ + 30v₂, 30v₁ + 31v₂, 31v₁ + 32v₂, 32v₁ + 33v₂, 33v₁ + 34v₂, 34v₁ + 35v₂, 35v₁ + 36v₂, 36v₁ + 37v₂, 37v₁ + 38v₂, 38v₁ + 39v₂, 39v₁ + 40v₂, 40v₁ + 41v₂, 41v₁ + 42v₂, 42v₁ + 43v₂, 43v₁ + 44v₂, 44v₁ + 45v₂, 45v₁ + 46v₂, 46v₁ + 47v₂, 47v₁ + 48v₂, 48v₁ + 49v₂, 49v₁ + 50v₂, 50v₁ + 51v₂, 51v₁ + 52v₂, 52v₁ + 53v₂, 53v₁ + 54v₂, 54v₁ + 55v₂, 55v₁ + 56v₂, 56v₁ + 57v₂, 57v₁ + 58v₂, 58v₁ + 59v₂, 59v₁ + 60v₂, 60v₁ + 61v₂, 61v₁ + 62v₂, 62v₁ + 63v₂, 63v₁ + 64v₂, 64v₁ + 65v₂, 65v₁ + 66v₂, 66v₁ + 67v₂, 67v₁ + 68v₂, 68v₁ + 69v₂, 69v₁ + 70v₂, 70v₁ + 71v₂, 71v₁ + 72v₂, 72v₁ + 73v₂], ϵ=0.00018526365227124832, α=0.6933063412203937
Chain{Λ¹⟨××⟩×107, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂, 15v₁ + 16v₂, 16v₁ + 17v₂, 17v₁ + 18v₂, 18v₁ + 19v₂, 19v₁ + 20v₂, 20v₁ + 21v₂, 21v₁ + 22v₂, 22v₁ + 23v₂, 23v₁ + 24v₂, 24v₁ + 25v₂, 25v₁ + 26v₂, 26v₁ + 27v₂, 27v₁ + 28v₂, 28v₁ + 29v₂, 29v₁ + 30v₂, 30v₁ + 31v₂, 31v₁ + 32v₂, 32v₁ + 33v₂, 33v₁ + 34v₂, 34v₁ + 35v₂, 35v₁ + 36v₂, 36v₁ + 37v₂, 37v₁ + 38v₂, 38v₁ + 39v₂, 39v₁ + 40v₂, 40v₁ + 41v₂, 41v₁ + 42v₂, 42v₁ + 43v₂, 43v₁ + 44v₂, 44v₁ + 45v₂, 45v₁ + 46v₂, 46v₁ + 47v₂, 47v₁ + 48v₂, 48v₁ + 49v₂, 49v₁ + 50v₂, 50v₁ + 51v₂, 51v₁ + 52v₂, 52v₁ + 53v₂, 53v₁ + 54v₂, 54v₁ + 55v₂, 55v₁ + 56v₂, 56v₁ + 57v₂, 57v₁ + 58v₂, 58v₁ + 59v₂, 59v₁ + 60v₂, 60v₁ + 61v₂, 61v₁ + 62v₂, 62v₁ + 63v₂, 63v₁ + 64v₂, 64v₁ + 65v₂, 65v₁ + 66v₂, 66v₁ + 67v₂, 67v₁ + 68v₂, 68v₁ + 69v₂, 69v₁ + 70v₂, 70v₁ + 71v₂, 71v₁ + 72v₂, 72v₁ + 73v₂, 73v₁ + 74v₂, 74v₁ + 75v₂, 75v₁ + 76v₂, 76v₁ + 77v₂, 77v₁ + 78v₂, 78v₁ + 79v₂, 79v₁ + 80v₂, 80v₁ + 81v₂, 81v₁ + 82v₂, 82v₁ + 83v₂, 83v₁ + 84v₂, 84v₁ + 85v₂, 85v₁ + 86v₂, 86v₁ + 87v₂, 87v₁ + 88v₂, 88v₁ + 89v₂, 89v₁ + 90v₂, 90v₁ + 91v₂, 91v₁ + 92v₂, 92v₁ + 93v₂, 93v₁ + 94v₂, 94v₁ + 95v₂, 95v₁ + 96v₂, 96v₁ + 97v₂, 97v₁ + 98v₂, 98v₁ + 99v₂, 99v₁ + 100v₂, 100v₁ + 101v₂, 101v₁ + 102v₂, 102v₁ + 103v₂, 103v₁ + 104v₂, 104v₁ + 105v₂, 105v₁ + 106v₂, 106v₁ + 107v₂], ϵ=0.00010473946595359856, α=0.5665331320718252
Chain{Λ¹⟨××⟩×141, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂, 15v₁ + 16v₂, 16v₁ + 17v₂, 17v₁ + 18v₂, 18v₁ + 19v₂, 19v₁ + 20v₂, 20v₁ + 21v₂, 21v₁ + 22v₂, 22v₁ + 23v₂, 23v₁ + 24v₂, 24v₁ + 25v₂, 25v₁ + 26v₂, 26v₁ + 27v₂, 27v₁ + 28v₂, 28v₁ + 29v₂, 29v₁ + 30v₂, 30v₁ + 31v₂, 31v₁ + 32v₂, 32v₁ + 33v₂, 33v₁ + 34v₂, 34v₁ + 35v₂, 35v₁ + 36v₂, 36v₁ + 37v₂, 37v₁ + 38v₂, 38v₁ + 39v₂, 39v₁ + 40v₂, 40v₁ + 41v₂, 41v₁ + 42v₂, 42v₁ + 43v₂, 43v₁ + 44v₂, 44v₁ + 45v₂, 45v₁ + 46v₂, 46v₁ + 47v₂, 47v₁ + 48v₂, 48v₁ + 49v₂, 49v₁ + 50v₂, 50v₁ + 51v₂, 51v₁ + 52v₂, 52v₁ + 53v₂, 53v₁ + 54v₂, 54v₁ + 55v₂, 55v₁ + 56v₂, 56v₁ + 57v₂, 57v₁ + 58v₂, 58v₁ + 59v₂, 59v₁ + 60v₂, 60v₁ + 61v₂, 61v₁ + 62v₂, 62v₁ + 63v₂, 63v₁ + 64v₂, 64v₁ + 65v₂, 65v₁ + 66v₂, 66v₁ + 67v₂, 67v₁ + 68v₂, 68v₁ + 69v₂, 69v₁ + 70v₂, 70v₁ + 71v₂, 71v₁ + 72v₂, 72v₁ + 73v₂, 73v₁ + 74v₂, 74v₁ + 75v₂, 75v₁ + 76v₂, 76v₁ + 77v₂, 77v₁ + 78v₂, 78v₁ + 79v₂, 79v₁ + 80v₂, 80v₁ + 81v₂, 81v₁ + 82v₂, 82v₁ + 83v₂, 83v₁ + 84v₂, 84v₁ + 85v₂, 85v₁ + 86v₂, 86v₁ + 87v₂, 87v₁ + 88v₂, 88v₁ + 89v₂, 89v₁ + 90v₂, 90v₁ + 91v₂, 91v₁ + 92v₂, 92v₁ + 93v₂, 93v₁ + 94v₂, 94v₁ + 95v₂, 95v₁ + 96v₂, 96v₁ + 97v₂, 97v₁ + 98v₂, 98v₁ + 99v₂, 99v₁ + 100v₂, 100v₁ + 101v₂, 101v₁ + 102v₂, 102v₁ + 103v₂, 103v₁ + 104v₂, 104v₁ + 105v₂, 105v₁ + 106v₂, 106v₁ + 107v₂, 107v₁ + 108v₂, 108v₁ + 109v₂, 109v₁ + 110v₂, 110v₁ + 111v₂, 111v₁ + 112v₂, 112v₁ + 113v₂, 113v₁ + 114v₂, 114v₁ + 115v₂, 115v₁ + 116v₂, 116v₁ + 117v₂, 117v₁ + 118v₂, 118v₁ + 119v₂, 119v₁ + 120v₂, 120v₁ + 121v₂, 121v₁ + 122v₂, 122v₁ + 123v₂, 123v₁ + 124v₂, 124v₁ + 125v₂, 125v₁ + 126v₂, 126v₁ + 127v₂, 127v₁ + 128v₂, 128v₁ + 129v₂, 129v₁ + 130v₂, 130v₁ + 131v₂, 131v₁ + 132v₂, 132v₁ + 133v₂, 133v₁ + 134v₂, 134v₁ + 135v₂, 135v₁ + 136v₂, 136v₁ + 137v₂, 137v₁ + 138v₂, 138v₁ + 139v₂, 139v₁ + 140v₂, 140v₁ + 141v₂], ϵ=6.647442974706138e-5, α=0.6797480833208435
Chain{Λ¹⟨××⟩×209, 1, Int64, 2}[1v₁ + 2v₂, 2v₁ + 3v₂, 3v₁ + 4v₂, 4v₁ + 5v₂, 5v₁ + 6v₂, 6v₁ + 7v₂, 7v₁ + 8v₂, 8v₁ + 9v₂, 9v₁ + 10v₂, 10v₁ + 11v₂, 11v₁ + 12v₂, 12v₁ + 13v₂, 13v₁ + 14v₂, 14v₁ + 15v₂, 15v₁ + 16v₂, 16v₁ + 17v₂, 17v₁ + 18v₂, 18v₁ + 19v₂, 19v₁ + 20v₂, 20v₁ + 21v₂, 21v₁ + 22v₂, 22v₁ + 23v₂, 23v₁ + 24v₂, 24v₁ + 25v₂, 25v₁ + 26v₂, 26v₁ + 27v₂, 27v₁ + 28v₂, 28v₁ + 29v₂, 29v₁ + 30v₂, 30v₁ + 31v₂, 31v₁ + 32v₂, 32v₁ + 33v₂, 33v₁ + 34v₂, 34v₁ + 35v₂, 35v₁ + 36v₂, 36v₁ + 37v₂, 37v₁ + 38v₂, 38v₁ + 39v₂, 39v₁ + 40v₂, 40v₁ + 41v₂, 41v₁ + 42v₂, 42v₁ + 43v₂, 43v₁ + 44v₂, 44v₁ + 45v₂, 45v₁ + 46v₂, 46v₁ + 47v₂, 47v₁ + 48v₂, 48v₁ + 49v₂, 49v₁ + 50v₂, 50v₁ + 51v₂, 51v₁ + 52v₂, 52v₁ + 53v₂, 53v₁ + 54v₂, 54v₁ + 55v₂, 55v₁ + 56v₂, 56v₁ + 57v₂, 57v₁ + 58v₂, 58v₁ + 59v₂, 59v₁ + 60v₂, 60v₁ + 61v₂, 61v₁ + 62v₂, 62v₁ + 63v₂, 63v₁ + 64v₂, 64v₁ + 65v₂, 65v₁ + 66v₂, 66v₁ + 67v₂, 67v₁ + 68v₂, 68v₁ + 69v₂, 69v₁ + 70v₂, 70v₁ + 71v₂, 71v₁ + 72v₂, 72v₁ + 73v₂, 73v₁ + 74v₂, 74v₁ + 75v₂, 75v₁ + 76v₂, 76v₁ + 77v₂, 77v₁ + 78v₂, 78v₁ + 79v₂, 79v₁ + 80v₂, 80v₁ + 81v₂, 81v₁ + 82v₂, 82v₁ + 83v₂, 83v₁ + 84v₂, 84v₁ + 85v₂, 85v₁ + 86v₂, 86v₁ + 87v₂, 87v₁ + 88v₂, 88v₁ + 89v₂, 89v₁ + 90v₂, 90v₁ + 91v₂, 91v₁ + 92v₂, 92v₁ + 93v₂, 93v₁ + 94v₂, 94v₁ + 95v₂, 95v₁ + 96v₂, 96v₁ + 97v₂, 97v₁ + 98v₂, 98v₁ + 99v₂, 99v₁ + 100v₂, 100v₁ + 101v₂, 101v₁ + 102v₂, 102v₁ + 103v₂, 103v₁ + 104v₂, 104v₁ + 105v₂, 105v₁ + 106v₂, 106v₁ + 107v₂, 107v₁ + 108v₂, 108v₁ + 109v₂, 109v₁ + 110v₂, 110v₁ + 111v₂, 111v₁ + 112v₂, 112v₁ + 113v₂, 113v₁ + 114v₂, 114v₁ + 115v₂, 115v₁ + 116v₂, 116v₁ + 117v₂, 117v₁ + 118v₂, 118v₁ + 119v₂, 119v₁ + 120v₂, 120v₁ + 121v₂, 121v₁ + 122v₂, 122v₁ + 123v₂, 123v₁ + 124v₂, 124v₁ + 125v₂, 125v₁ + 126v₂, 126v₁ + 127v₂, 127v₁ + 128v₂, 128v₁ + 129v₂, 129v₁ + 130v₂, 130v₁ + 131v₂, 131v₁ + 132v₂, 132v₁ + 133v₂, 133v₁ + 134v₂, 134v₁ + 135v₂, 135v₁ + 136v₂, 136v₁ + 137v₂, 137v₁ + 138v₂, 138v₁ + 139v₂, 139v₁ + 140v₂, 140v₁ + 141v₂, 141v₁ + 142v₂, 142v₁ + 143v₂, 143v₁ + 144v₂, 144v₁ + 145v₂, 145v₁ + 146v₂, 146v₁ + 147v₂, 147v₁ + 148v₂, 148v₁ + 149v₂, 149v₁ + 150v₂, 150v₁ + 151v₂, 151v₁ + 152v₂, 152v₁ + 153v₂, 153v₁ + 154v₂, 154v₁ + 155v₂, 155v₁ + 156v₂, 156v₁ + 157v₂, 157v₁ + 158v₂, 158v₁ + 159v₂, 159v₁ + 160v₂, 160v₁ + 161v₂, 161v₁ + 162v₂, 162v₁ + 163v₂, 163v₁ + 164v₂, 164v₁ + 165v₂, 165v₁ + 166v₂, 166v₁ + 167v₂, 167v₁ + 168v₂, 168v₁ + 169v₂, 169v₁ + 170v₂, 170v₁ + 171v₂, 171v₁ + 172v₂, 172v₁ + 173v₂, 173v₁ + 174v₂, 174v₁ + 175v₂, 175v₁ + 176v₂, 176v₁ + 177v₂, 177v₁ + 178v₂, 178v₁ + 179v₂, 179v₁ + 180v₂, 180v₁ + 181v₂, 181v₁ + 182v₂, 182v₁ + 183v₂, 183v₁ + 184v₂, 184v₁ + 185v₂, 185v₁ + 186v₂, 186v₁ + 187v₂, 187v₁ + 188v₂, 188v₁ + 189v₂, 189v₁ + 190v₂, 190v₁ + 191v₂, 191v₁ + 192v₂, 192v₁ + 193v₂, 193v₁ + 194v₂, 194v₁ + 195v₂, 195v₁ + 196v₂, 196v₁ + 197v₂, 197v₁ + 198v₂, 198v₁ + 199v₂, 199v₁ + 200v₂, 200v₁ + 201v₂, 201v₁ + 202v₂, 202v₁ + 203v₂, 203v₁ + 204v₂, 204v₁ + 205v₂, 205v₁ + 206v₂, 206v₁ + 207v₂, 207v₁ + 208v₂, 208v₁ + 209v₂], ϵ=3.725363657493422e-5, α=0.5641733282385573
Testing Adapode tests passed