-
Notifications
You must be signed in to change notification settings - Fork 11
/
periodicline.jl
50 lines (35 loc) · 1.39 KB
/
periodicline.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
## stieltjes
function stieltjes(S::Space{<:PeriodicLine},f::AbstractVector,z::Number)
S2=setdomain(S,Circle())
stieltjes(S2,f,mappoint(domain(S),Circle(),z))+hilbert(S2,f,-1)*π
end
function hilbert(S::Space{<:PeriodicLine},f::AbstractVector,z::Number)
S2=setdomain(S,Circle())
hilbert(S2,f,mappoint(domain(f),Circle(),z))-hilbert(S2,f,-1)
end
function stieltjes(S::SumSpace{<:Any,<:PeriodicLine},f::AbstractVector,z::Number)
S2=setdomain(S,Circle())
stieltjes(S2,f,mappoint(domain(S),Circle(),z))+hilbert(S2,f,-1)*π
end
function hilbert(S::SumSpace{<:Any,<:PeriodicLine},f::AbstractVector,z::Number)
S2=setdomain(S,Circle())
hilbert(S2,f,mappoint(domain(f),Circle(),z))-hilbert(S2,f,-1)
end
# we use the fact that C^± (z^k + z^(k-1)) = z^k + z^(k-1) and 0
# for k > 0 and
# C^± (z^k + z^(k-1)) = 0 and -z^k - z^(k-1)
# for k < 0, the formula H = im*C^+ + im*C^-
# and C± 1 = ±1/2 (understood as a PV integral) so that H 1 = 0
bandwidths(H::ConcreteHilbert{LaurentDirichlet{DD,RR}}) where {DD<:PeriodicLine,RR} =
(0,0)
rangespace(H::ConcreteHilbert{LaurentDirichlet{DD,RR}}) where {DD<:PeriodicLine,RR} =
domainspace(H)
function getindex(H::ConcreteHilbert{LaurentDirichlet{PeriodicLine{false,T},RR}},k::Integer,j::Integer) where {T,RR}
if k==j && iseven(k)
-T(im)
elseif k==j && isodd(k) && k > 0
T(im)
else
zero(T)
end
end