-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoft_prompt_trainer_wo_demo.py
340 lines (270 loc) · 13.3 KB
/
soft_prompt_trainer_wo_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
__author__ = 'Eunhwan Jude Park'
__email__ = 'judepark@{jbnu.ac.kr, kookmin.ac.kr}'
__repository__ = 'https://github.com/JudePark96'
import itertools
import json
import logging
import math
import os
import random
import sys
from copy import copy
from typing import List, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import trange, tqdm
from transformers import PreTrainedTokenizer, AdamW, get_linear_schedule_with_warmup, RobertaForMaskedLM, \
RobertaTokenizer, AutoModelForMaskedLM, AutoTokenizer
from src.common.arguments import ArgumentsConfig
from src.data_utils.add_soft_prompt_tokens import add_special_tokens_and_resize_embedding
from src.data_utils.processors import processors_mapping, compute_metrics_mapping
from src.feature_utils.convert_examples_to_conti_demon_prompt_features import \
convert_examples_to_conti_demon_prompt_features
from src.feature_utils.convert_examples_to_normal_prompt_features import convert_examples_to_prompt_features
from src.feature_utils.input_features_definer import PromptWithContinuousDemonstrationFeatures
from src.modeling.continuous_demonstration_prompt_modeling import ContiDemonPromptModel
from src.modeling.soft_prompts_modeling import RobertaPromptingLM
from src.verbalizers.verbalizer_definer import Verbalizer
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class BaseTrainer:
def __init__(self,
args: ArgumentsConfig) -> None:
super().__init__()
self.args = args
def get_dataloader(self,
examples: List[PromptWithContinuousDemonstrationFeatures],
tokenizer: PreTrainedTokenizer,
is_training: bool = True):
features = convert_examples_to_prompt_features(examples,
tokenizer,
task=self.args.task_name,
manual_template=self.args.manual_template,
max_seq_length=self.args.max_seq_length,
lm_max_seq_length=self.args.max_seq_length)
dataset = TensorDataset(
torch.tensor([f.input_ids for f in features], dtype=torch.long),
torch.tensor([f.attention_mask for f in features], dtype=torch.float),
torch.tensor([f.mlm_label for f in features], dtype=torch.long),
torch.tensor([f.cls_label for f in features], dtype=torch.long)
)
dataloader = DataLoader(dataset, batch_size=self.args.train_batch_size, shuffle=True) if is_training \
else DataLoader(dataset, batch_size=self.args.eval_batch_size)
return dataset, dataloader
def count_parameters(self, model: nn.Parameter):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def save_model_state_dict(self, save_state_dict_dir, state_dict_file, model):
"""
Save model state dict. Note this function is not for reproduce or continuing train.
Arguments:
model (nn.Module):
save_state_dict_dir (str):
state_dict_file (str):
"""
model_to_save = model.module if hasattr(model, 'module') else model
save_path = os.path.join(save_state_dict_dir, state_dict_file)
torch.save(model_to_save.state_dict(), save_path, _use_new_zipfile_serialization=False)
logger.info(f'{save_path} model saved!')
def get_verbalizer(self, task_name: str, tokenizer: PreTrainedTokenizer) -> torch.Tensor:
label_space = [Verbalizer[v] for v in list(filter(lambda x: x == task_name, list(Verbalizer)))][0]
label_space = list(itertools.chain(*[tokenizer.convert_tokens_to_ids(tokenizer.tokenize(l)) for l in label_space]))
return torch.tensor(label_space)
def train(self):
raise NotImplementedError()
def eval(self, loader: DataLoader, mode: str = 'Dev'):
raise NotImplementedError()
def inference(self):
raise NotImplementedError()
class SoftPromptTrainerWithoutDemo(BaseTrainer):
def __init__(self, args: ArgumentsConfig) -> None:
super().__init__(args)
data_processor = processors_mapping[args.task_name]
train_examples = data_processor.get_train_examples(args.dataset_dir)
dev_examples = data_processor.get_dev_examples(args.dataset_dir)
test_examples = data_processor.get_test_examples(args.dataset_dir)
self.model = RobertaPromptingLM.from_pretrained(args.lm_model, n_tokens=100, initialize_from_vocab=False)
self.tokenizer = RobertaTokenizer.from_pretrained(args.lm_model)
logger.info(f'RobertaPromptingLM, AutoTokenizer: {args.lm_model} loaded!')
self.train_dataset, self.train_dataloader = self.get_dataloader(train_examples,
self.tokenizer)
self.dev_dataset, self.dev_dataloader = self.get_dataloader(dev_examples, self.tokenizer, False)
self.test_dataset, self.test_dataloader = self.get_dataloader(test_examples, self.tokenizer, False)
self.total_train_step = len(
self.train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs
self.warm_steps = math.ceil(self.total_train_step * self.args.warmup_proportion)
parameters = [
{'params': [p for p in self.model.parameters() if p.requires_grad]}
]
self.optimizer = AdamW(parameters, lr=args.learning_rate)
self.scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=self.warm_steps,
num_training_steps=self.total_train_step)
logger.info(
f'Total number of trainable parameters: {self.count_parameters(self.model)}')
if self.args.is_cuda:
logger.info('Now all parameter is in CUDA option.')
self.model.cuda()
self.verbalizer = self.get_verbalizer(self.args.task_name, self.tokenizer).cuda()
self.writer = SummaryWriter(log_dir=self.args.tensorboard_output_dir)
logger.info('Zero-Shot Test Evaluation')
self.global_steps = 0
self.early_stop_epoch = 0
# self.eval(self.dev_dataloader, 'Zero-Shot Test')
def train(self):
train_iterator = trange(int(self.args.num_train_epochs), desc='Epoch')
self.model.train()
self.model.zero_grad()
self.test_best_acc = 0.0
self.dev_best_acc = 0.0
# Only for MRPC, QQP.
self.test_best_f1 = 0.0
self.dev_best_f1 = 0.0
self.loss_fct = nn.CrossEntropyLoss()
for _ in train_iterator:
epoch_iterator = tqdm(self.train_dataloader, desc='Iteration')
iter_loss = 0.0
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.cuda() for t in batch) if self.args.is_cuda else batch
model_inputs = {'input_ids': batch[0],
'attention_mask': batch[1]}
model_output = self.model(**model_inputs).logits
mlm_label = torch.cat(
(torch.full((batch[2].shape[0], self.model.n_tokens), -100).to(batch[2].device),
batch[2]),
dim=1
)
loss = self.loss_fct(model_output[mlm_label > 0][:, self.verbalizer], batch[3])
if self.args.gradient_accumulation_steps > 1:
loss /= self.args.gradient_accumulation_steps
loss.backward()
if (step + 1) % self.args.gradient_accumulation_steps == 0:
if self.args.max_grad_norm > 0:
nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.model.zero_grad()
self.global_steps += 1
iter_loss += loss.item()
epoch_iterator.set_postfix({
"epoch": f"{_}",
"global_steps": f"{self.global_steps}",
"prompt_learning_rate": f"{self.scheduler.get_last_lr()[0]:.10f}",
"rolling_loss": f"{iter_loss / (step + 1) * self.args.gradient_accumulation_steps:.5f}",
"last_loss": f"{loss.item() * self.args.gradient_accumulation_steps:.5f}"
})
dev_output = self.eval(self.dev_dataloader, mode='Dev')
if self.args.task_name not in ['qqp', 'mrpc']:
if 'mnli' in self.args.task_name:
dev_acc = dev_output['mnli/acc']
else:
dev_acc = dev_output['acc']
if dev_acc >= self.dev_best_acc:
self.dev_best_acc = dev_acc
test_output = self.eval(self.test_dataloader, mode='Test')
if 'mnli' in self.args.task_name:
test_acc = test_output['mnli/acc']
else:
test_acc = test_output['acc']
if test_acc > self.test_best_acc:
self.test_best_acc = test_acc
self.save_model_state_dict(self.args.tensorboard_output_dir, 'best_model.pth', self.model)
else:
dev_f1 = dev_output['f1']
if dev_f1 >= self.dev_best_f1:
self.dev_best_f1 = dev_f1
test_output = self.eval(self.test_dataloader, mode='Test')
test_f1 = test_output['f1']
if test_f1 > self.test_best_f1:
self.test_best_f1 = test_f1
self.save_model_state_dict(self.args.tensorboard_output_dir, 'best_model.pth', self.model)
def eval(self, loader: DataLoader, mode: str = 'Dev'):
self.model.eval()
preds = []
trues = []
for batch in tqdm(loader, desc=f'{mode} Iteration'):
batch = tuple(t.cuda() for t in batch) if self.args.is_cuda else batch
with torch.no_grad():
model_inputs = {'input_ids': batch[0],
'attention_mask': batch[1]}
model_output = self.model(**model_inputs).logits
mlm_label = torch.cat(
(torch.full((batch[2].shape[0], self.model.n_tokens), -100).to(batch[2].device),
batch[2]),
dim=1
)
logits = model_output[mlm_label > 0][:, self.verbalizer]
final_logits = F.softmax(logits, dim=-1)
final_logits = final_logits.argmax(dim=-1)
final_logits = final_logits.detach().cpu().tolist() if self.args.is_cuda else final_logits.tolist()
cls_logits = batch[-1].squeeze(dim=-1)
cls_logits = cls_logits.detach().cpu().tolist() if self.args.is_cuda else cls_logits.tolist()
preds.extend(final_logits)
trues.extend(cls_logits)
output_dict = compute_metrics_mapping[self.args.task_name](self.args.task_name, np.array(preds), np.array(trues))
for k, v in output_dict.items():
logger.info(f'Global Step: {self.global_steps}: {mode}/{k} = {v}')
self.writer.add_scalar(f'{mode}/{k}', v, self.global_steps)
self.model.train()
return output_dict
class SoftPromptTrainerWithoutDemoInference(BaseTrainer):
def __init__(self, args: ArgumentsConfig) -> None:
super().__init__(args)
data_processor = processors_mapping[args.task_name]
test_examples = data_processor.get_test_examples(args.dataset_dir)
self.model = RobertaPromptingLM.from_pretrained(args.lm_model, n_tokens=100, initialize_from_vocab=False)
self.tokenizer = RobertaTokenizer.from_pretrained(args.lm_model)
logger.info(f'RobertaPromptingLM, AutoTokenizer: {args.lm_model} loaded!')
self.test_dataset, self.test_dataloader = self.get_dataloader(test_examples, self.tokenizer, False)
trained_weights = torch.load(os.path.join(self.args.tensorboard_output_dir, 'best_model.pth'), map_location='cpu')
self.model.load_state_dict(trained_weights)
if self.args.is_cuda:
logger.info('Now all parameter is in CUDA option.')
self.model.cuda()
self.verbalizer = self.get_verbalizer(self.args.task_name, self.tokenizer).cuda()
def inference(self):
self.model.eval()
preds = []
trues = []
hidden_states = []
labels = []
for batch in tqdm(self.test_dataloader, desc=f'Test Iteration'):
batch = tuple(t.cuda() for t in batch) if self.args.is_cuda else batch
with torch.no_grad():
model_inputs = {'input_ids': batch[0],
'attention_mask': batch[1]}
model_output = self.model(**model_inputs).logits
mlm_label = torch.cat(
(torch.full((batch[2].shape[0], self.model.n_tokens), -100).to(batch[2].device),
batch[2]),
dim=1
)
hidden_states.append(model_output[mlm_label > 0].detach().cpu())
labels.append(batch[-1].detach().cpu())
logits = model_output[mlm_label > 0][:, self.verbalizer]
final_logits = F.softmax(logits, dim=-1)
final_logits = final_logits.argmax(dim=-1)
final_logits = final_logits.detach().cpu().tolist() if self.args.is_cuda else final_logits.tolist()
cls_logits = batch[-1].squeeze(dim=-1)
cls_logits = cls_logits.detach().cpu().tolist() if self.args.is_cuda else cls_logits.tolist()
preds.extend(final_logits)
trues.extend(cls_logits)
output_dict = compute_metrics_mapping[self.args.task_name](self.args.task_name, np.array(preds), np.array(trues))
for k, v in output_dict.items():
logger.info(f'{k} = {v}')
return output_dict, hidden_states, labels
if __name__ == '__main__':
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(13)
logger.info(sys.argv[1])
args = ArgumentsConfig.from_json_file(sys.argv[1])
logger.info(args.tensorboard_output_dir)
SoftPromptTrainerWithoutDemo(args).train()