forked from xuebinqin/U-2-Net
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathu2net_refactor.py
168 lines (136 loc) · 5.95 KB
/
u2net_refactor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
import math
__all__ = ['U2NET_full', 'U2NET_lite']
def _upsample_like(x, size):
return nn.Upsample(size=size, mode='bilinear', align_corners=False)(x)
def _size_map(x, height):
# {height: size} for Upsample
size = list(x.shape[-2:])
sizes = {}
for h in range(1, height):
sizes[h] = size
size = [math.ceil(w / 2) for w in size]
return sizes
class REBNCONV(nn.Module):
def __init__(self, in_ch=3, out_ch=3, dilate=1):
super(REBNCONV, self).__init__()
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dilate, dilation=1 * dilate)
self.bn_s1 = nn.BatchNorm2d(out_ch)
self.relu_s1 = nn.ReLU(inplace=True)
def forward(self, x):
return self.relu_s1(self.bn_s1(self.conv_s1(x)))
class RSU(nn.Module):
def __init__(self, name, height, in_ch, mid_ch, out_ch, dilated=False):
super(RSU, self).__init__()
self.name = name
self.height = height
self.dilated = dilated
self._make_layers(height, in_ch, mid_ch, out_ch, dilated)
def forward(self, x):
sizes = _size_map(x, self.height)
x = self.rebnconvin(x)
# U-Net like symmetric encoder-decoder structure
def unet(x, height=1):
if height < self.height:
x1 = getattr(self, f'rebnconv{height}')(x)
if not self.dilated and height < self.height - 1:
x2 = unet(getattr(self, 'downsample')(x1), height + 1)
else:
x2 = unet(x1, height + 1)
x = getattr(self, f'rebnconv{height}d')(torch.cat((x2, x1), 1))
return _upsample_like(x, sizes[height - 1]) if not self.dilated and height > 1 else x
else:
return getattr(self, f'rebnconv{height}')(x)
return x + unet(x)
def _make_layers(self, height, in_ch, mid_ch, out_ch, dilated=False):
self.add_module('rebnconvin', REBNCONV(in_ch, out_ch))
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True))
self.add_module(f'rebnconv1', REBNCONV(out_ch, mid_ch))
self.add_module(f'rebnconv1d', REBNCONV(mid_ch * 2, out_ch))
for i in range(2, height):
dilate = 1 if not dilated else 2 ** (i - 1)
self.add_module(f'rebnconv{i}', REBNCONV(mid_ch, mid_ch, dilate=dilate))
self.add_module(f'rebnconv{i}d', REBNCONV(mid_ch * 2, mid_ch, dilate=dilate))
dilate = 2 if not dilated else 2 ** (height - 1)
self.add_module(f'rebnconv{height}', REBNCONV(mid_ch, mid_ch, dilate=dilate))
class U2NET(nn.Module):
def __init__(self, cfgs, out_ch):
super(U2NET, self).__init__()
self.out_ch = out_ch
self._make_layers(cfgs)
def forward(self, x):
sizes = _size_map(x, self.height)
maps = [] # storage for maps
# side saliency map
def unet(x, height=1):
if height < 6:
x1 = getattr(self, f'stage{height}')(x)
x2 = unet(getattr(self, 'downsample')(x1), height + 1)
x = getattr(self, f'stage{height}d')(torch.cat((x2, x1), 1))
side(x, height)
return _upsample_like(x, sizes[height - 1]) if height > 1 else x
else:
x = getattr(self, f'stage{height}')(x)
side(x, height)
return _upsample_like(x, sizes[height - 1])
def side(x, h):
# side output saliency map (before sigmoid)
x = getattr(self, f'side{h}')(x)
x = _upsample_like(x, sizes[1])
maps.append(x)
def fuse():
# fuse saliency probability maps
maps.reverse()
x = torch.cat(maps, 1)
x = getattr(self, 'outconv')(x)
maps.insert(0, x)
return [torch.sigmoid(x) for x in maps]
unet(x)
maps = fuse()
return maps
def _make_layers(self, cfgs):
self.height = int((len(cfgs) + 1) / 2)
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True))
for k, v in cfgs.items():
# build rsu block
self.add_module(k, RSU(v[0], *v[1]))
if v[2] > 0:
# build side layer
self.add_module(f'side{v[0][-1]}', nn.Conv2d(v[2], self.out_ch, 3, padding=1))
# build fuse layer
self.add_module('outconv', nn.Conv2d(int(self.height * self.out_ch), self.out_ch, 1))
def U2NET_full():
full = {
# cfgs for building RSUs and sides
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
'stage1': ['En_1', (7, 3, 32, 64), -1],
'stage2': ['En_2', (6, 64, 32, 128), -1],
'stage3': ['En_3', (5, 128, 64, 256), -1],
'stage4': ['En_4', (4, 256, 128, 512), -1],
'stage5': ['En_5', (4, 512, 256, 512, True), -1],
'stage6': ['En_6', (4, 512, 256, 512, True), 512],
'stage5d': ['De_5', (4, 1024, 256, 512, True), 512],
'stage4d': ['De_4', (4, 1024, 128, 256), 256],
'stage3d': ['De_3', (5, 512, 64, 128), 128],
'stage2d': ['De_2', (6, 256, 32, 64), 64],
'stage1d': ['De_1', (7, 128, 16, 64), 64],
}
return U2NET(cfgs=full, out_ch=1)
def U2NET_lite():
lite = {
# cfgs for building RSUs and sides
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
'stage1': ['En_1', (7, 3, 16, 64), -1],
'stage2': ['En_2', (6, 64, 16, 64), -1],
'stage3': ['En_3', (5, 64, 16, 64), -1],
'stage4': ['En_4', (4, 64, 16, 64), -1],
'stage5': ['En_5', (4, 64, 16, 64, True), -1],
'stage6': ['En_6', (4, 64, 16, 64, True), 64],
'stage5d': ['De_5', (4, 128, 16, 64, True), 64],
'stage4d': ['De_4', (4, 128, 16, 64), 64],
'stage3d': ['De_3', (5, 128, 16, 64), 64],
'stage2d': ['De_2', (6, 128, 16, 64), 64],
'stage1d': ['De_1', (7, 128, 16, 64), 64],
}
return U2NET(cfgs=lite, out_ch=1)