-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgal_sample.py
executable file
·1778 lines (1549 loc) · 67.4 KB
/
gal_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Classes and functions to support galaxy target selection and
# selection function
import math
import matplotlib.pyplot as plt
import numpy as np
import os
import pdb
import scipy.optimize
import scipy.stats
from astropy.coordinates import SkyCoord
from astropy.cosmology import FlatLambdaCDM
from astropy import table
from astropy.table import Table, join
#from pymoc import MOC
#import pymoc.util.catalog
#import pymoc.util.plot
import util
# Global parameters
gama_data = os.environ['GAMA_DATA']
tcfile = gama_data + 'TilingCatv46.fits'
kctemp = gama_data + 'kcorr_dmu/v5/kcorr_auto_z{:02d}_vecv05.fits'
bnfile = gama_data + 'BrightNeighbours.fits'
ext_file = gama_data + 'GalacticExtinctionv03.fits'
sersic_file = gama_data + 'SersicCatSDSSv09.fits'
g3cfof = gama_data + 'g3cv9/G3CFoFGroupv09.fits'
g3cmockhalo = gama_data + 'g3cv6/G3CMockHaloGroupv06.fits'
g3cgal = gama_data + 'g3cv9/G3CGalv08.fits'
g3cmockfof = gama_data + 'g3cv6/G3CMockFoFGroupv06.fits'
g3cmockgal = gama_data + 'g3cv6/G3CMockGalv06.fits'
g3csimgrp = gama_data + 'grp_sim/sim_group.fits'
g3csimgal = gama_data + 'grp_sim/sim_gal.fits'
smfile = gama_data + 'StellarMassesLambdarv20.fits'
wmax = 5.0 # max incompleteness weighting
# Jacknife regions are 4 deg segments starting at given RA
njack = 9
ra_jack = (129, 133, 137, 174, 178, 182, 211.5, 215.5, 219.5)
# Imaging completeness from Blanton et al 2005, ApJ, 631, 208, Table 1
# Modified to remove decline at bright end and to prevent negative
# completeness values at faint end
sb_tab = (18, 19, 19.46, 19.79, 20.11, 20.44, 20.76, 21.09, 21.41,
21.74, 22.06, 22.39, 22.71, 23.04, 23.36, 23.69, 24.01,
24.34, 26.00)
comp_tab = (1.0, 1.0, 0.99, 0.97, 0.98, 0.98, 0.98, 0.97, 0.96, 0.96,
0.97, 0.94, 0.86, 0.84, 0.76, 0.63, 0.44, 0.33, 0.01)
metadata_conflicts = 'silent' # Alternatives are 'warn', 'error'
# k-correction coeffs for GAMA group mocks, see Robotham+2011, eqn (8)
mock_pcoeff = (0.2085, 1.0226, 0.5237, 3.5902, 2.3843)
class Kcorr():
"""K-correction from polynomial fit."""
def __init__(self, z0=0, kcoeff=None):
self.z0 = z0
self.default_kcoeff = kcoeff
def __call__(self, z, kcoeff=None):
if kcoeff is None:
kcoeff = self.default_kcoeff
return np.polynomial.polynomial.polyval(z - self.z0, kcoeff)
class Ecorr():
"""Luminosity e-correction."""
def __init__(self, z0=0, Q=0, ev_model='z'):
self.Q = Q
self.z0 = z0
self.ev_model = ev_model
def __call__(self, z, Q=None):
if Q is None:
Q = self.Q
if self.ev_model == 'z':
return self.Q*(z - self.z0)
if self.ev_model == 'z1z':
return self.Q*z/(1+z)
#def kcorr(z, kcoeff):
# """K-correction from polynomial fit."""
# return np.polynomial.polynomial.polyval(z - kz0, kcoeff)
#
#
#def ecorr(z, Q):
# """e-correction."""
# if ev_model == 'none':
# try:
# return np.zeros(len(z))
# except TypeError:
# return 0.0
# if ev_model == 'z':
# return Q*(z - ez0)
# if ev_model == 'z1z':
# return Q*z/(1+z)
class Magnitude():
"""Attributes and methods for galaxy magnitudes,
including individual k- and e-corrections."""
def __init__(self, app, z, kcoeff, cosmo, kcorr, ecorr, band='r'):
self.app = app
self.z = z
self.cosmo = cosmo
self.kcoeff = kcoeff
self.kcorr = kcorr
self.ecorr = ecorr
self.band = band
self.abs = app - cosmo.dist_mod(z) - kcorr(z, kcoeff) + ecorr(z)
def app_calc(self, z):
"""Return apparent magnitude galaxy would have at redshift z."""
return (self.abs + self.cosmo.dist_mod(z) + self.kcorr(z, self.kcoeff) -
self.ecorr(z))
class SurfaceBrightness():
"""Attributes and methods for galaxy surface brightness,
including individual k- and e-corrections."""
def __init__(self, app, z, kcoeff, Q=0, band='r'):
self.app = app
self.z = z
self.kcoeff = kcoeff
self.Q = Q
self.band = band
self.abs = app - 10*np.log10(1 + z) - kcorr(z, kcoeff) + ecorr(z, Q)
def app_calc(self, z):
"""Return apparent surface brightness galaxy would have at redshift z."""
return (self.abs + 10*np.log10(1 + z) + kcorr(z, self.kcoeff) -
ecorr(z, self.Q))
class GalSample():
"""Attributes and methods for a galaxy sample.
Attributes are stored as an astropy table."""
def __init__(self, H0=100, omega_l=0.75, Q=1, P=1, ez0=0,
mlimits=(0, 19.8), zlimits=(0.002, 0.65)):
self.cosmo = util.CosmoLookup(H0, omega_l, zlimits, P=P)
self.mlimits = list(mlimits)
self.zlimits = list(zlimits)
self.vol_limited = False
self.Q = Q
self.P = P
self.ecorr = Ecorr(ez0, Q)
self.comp_min = -99
self.comp_max = 99
self.info = {}
def kcorr_fix(self, coeff, chi2max=10):
"""Set any missing or bad k-corrs to median values."""
# Fit polynomial to median K(z) for good fits
t = self.t
nk = t[coeff].shape[1]
# pdb.set_trace()
good = np.isfinite(np.sum(t[coeff], axis=1)) * (t['CHI2'] < chi2max)
zbin = np.linspace(self.zlimits[0], self.zlimits[1], 50) - self.kcorr.z0
k_array = np.polynomial.polynomial.polyval(
zbin, t[coeff][good].transpose())
k_median = np.median(k_array, axis=0)
self.kmean = np.polynomial.polynomial.polyfit(zbin, k_median, nk-1)
# Set any missing or bad k-corrs to median values
bad = np.logical_not(good)
nbad = len(t[bad])
if nbad > 0:
t[coeff][bad] = self.kmean
print(nbad, 'missing/bad k-corrections replaced with mean')
def abs_mags(self, magname):
"""Return absolute magnitudes corresponding to magname."""
mags = np.array([self.t[magname][i].abs for i in range(len(self.t))])
try:
return mags[self.use]
except AttributeError:
return mags
def read_gama(self, kref=0.1, chi2max=10, nq_min=3):
"""Reads table of basic GAMA data from tiling cat & kcorr DMU."""
global cosmo, kz0, njack, ra_jack
njack = 9
ra_jack = (129, 133, 137, 174, 178, 182, 211.5, 215.5, 219.5)
# # GAMA selection limits
# def sel_mag_lo(z, galdat):
# """r_petro > self.mlimits[0]."""
# return galdat['r_petro'].app_calc(z) - self.mlimits[0]
#
# def sel_mag_hi(z, galdat):
# """r_petro < self.mlimits[1]."""
# return self.mlimits[1] - galdat['r_petro'].app_calc(z)
#
tc_table = Table.read(tcfile)
kcfile = kctemp.format(int(10*kref))
kc_table = Table.read(kcfile)
# omega_l = kc_table.meta['OMEGA_L']
kz0 = kc_table.meta['Z0']
self.kcorr = Kcorr(kz0)
self.area = kc_table.meta['AREA'] * (math.pi/180.0)**2
# cosmo = util.CosmoLookup(H0, omega_l, self.zlimits, P=self.P)
t = join(tc_table, kc_table, keys='CATAID',
metadata_conflicts=metadata_conflicts)
# Select reliable, main-sample galaxies in given redshift range
sel = ((t['SURVEY_CLASS'] > 3) * (t['NQ_1'] >= nq_min) *
(t['Z_TONRY'] >= self.zlimits[0]) *
(t['Z_TONRY'] < self.zlimits[1]))
t = t[sel]
t.rename_column('Z_TONRY', 'z')
r_petro = [Magnitude(t['R_PETRO'][i], t['z'][i], t['PCOEFF_R'][i],
self.cosmo, self.kcorr, self.ecorr, band='r')
for i in range(len(t))]
# Copy required columns to new table
self.t = t['CATAID', 'RA', 'DEC', 'z', 'KCORR_R', 'PCOEFF_R', 'CHI2']
self.t['r_petro'] = r_petro
self.kcorr_fix('PCOEFF_R')
self.assign_jackknife('galaxies')
# colour according to Loveday+ 2012 eqn 3
self.t['r_abs'] = self.abs_mags('r_petro')
grcut = 0.15 - 0.03*self.t['r_abs']
gr = (t['G_MODEL'] - t['KCORR_G']) - (t['R_MODEL'] - t['KCORR_R'])
self.t['colour'] = ['c']*len(t)
sel = (gr < grcut)
self.t['colour'][sel] = 'b'
sel = (gr >= grcut)
self.t['colour'][sel] = 'r'
# Completeness weight
imcomp = np.interp(t['R_SB'], sb_tab, comp_tab)
zcomp = z_comp(t['FIBERMAG_R'])
self.t['cweight'] = np.clip(1.0/(imcomp*zcomp), 1, wmax)
# self.t['use'] = np.ones(len(self.t), dtype=np.bool)
def read_lowz(self, infile, chi2max=10, nq_min=3):
"""Read LOWZ data."""
global cosmo, kz0, njack, ra_jack
ra_jack = (0, 15, 120, 160, 180, 200, 220, 240, 340, 360)
njack = len(ra_jack)
def z_comp(r_fibre):
"""Sigmoid function fit to redshift succcess given r_fibre,
from misc.zcomp."""
p = (22.42, 2.55, 2.24)
return (1.0/(1 + np.exp(p[1]*(r_fibre-p[0]))))**p[2]
# Select galaxies in given redshift range and that satisfy LOWZ
# selection criteria
t = Table.read(infile)
ntot = len(t)
g_mod = t['MODELMAG_G']
r_mod = t['MODELMAG_R']
i_mod = t['MODELMAG_I']
r_cmod = t['CMODELMAGCOR_R']
c_par = 0.7*(g_mod - r_mod) + 1.2*(r_mod - i_mod - 0.18)
c_perp = np.fabs((r_mod - i_mod) - (g_mod - r_mod)/4.0 - 0.18)
sel = ((t['Z'] >= self.zlimits[0]) * (t['Z'] < self.zlimits[1]) *
(r_cmod >= self.mlimits[0]) * (r_cmod < self.mlimits[1]) *
(r_cmod < 13.5 + c_par/0.3) * (c_perp < 0.2))
t = t[sel]
nsel = len(t)
print(nsel, 'out of', ntot, 'galaxies selected')
t.rename_column('Z', 'z')
omega_l = t.meta['OMEGA_L']
kz0 = t.meta['Z0']
self.area = t.meta['AREA'] * (math.pi/180.0)**2
try:
self.Q = t.meta['Q']
self.P = t.meta['P']
except KeyError:
pass
cosmo = util.CosmoLookup(H0, omega_l, self.zlimits, P=self.P)
kcorr_fix(t, 'PCOEFF_G', self.zlimits)
kcorr_fix(t, 'PCOEFF_R', self.zlimits)
kcorr_fix(t, 'PCOEFF_I', self.zlimits)
g_model = [Magnitude(t['MODELMAG_G'][i], t['z'][i], t['PCOEFF_G'][i],
self.cosmo, self.kcorr, self.ecorr, band='g')
for i in range(len(t))]
r_model = [Magnitude(t['MODELMAG_R'][i], t['z'][i], t['PCOEFF_R'][i],
self.cosmo, self.kcorr, self.ecorr, band='r')
for i in range(len(t))]
i_model = [Magnitude(t['MODELMAG_I'][i], t['z'][i], t['PCOEFF_I'][i],
self.cosmo, self.kcorr, self.ecorr, band='i')
for i in range(len(t))]
r_cmodel = [Magnitude(t['CMODELMAGCOR_R'][i], t['z'][i], t['PCOEFF_R'][i],
self.cosmo, self.kcorr, self.ecorr, band='r')
for i in range(len(t))]
# Copy required columns to new table
self.t = t['RA', 'DEC', 'z', 'PCOEFF_G', 'PCOEFF_R', 'PCOEFF_I']
self.t['g_model'] = g_model
self.t['r_model'] = r_model
self.t['i_model'] = i_model
self.t['r_cmodel'] = r_cmodel
self.assign_jackknife('galaxies')
# Completeness weight
# imcomp = np.interp(t['R_SB'], sb_tab, comp_tab)
# zcomp = z_comp(t['FIBERMAG_R'])
# self.t['cweight'] = np.clip(1.0/(imcomp*zcomp), 1, wmax)
self.t['cweight'] = np.ones(len(self.t), dtype=np.bool)
# self.t['use'] = np.ones(len(self.t), dtype=np.bool)
def read_cmass(self, infile, chi2max=10, nq_min=3):
"""Read CMASS data."""
global cosmo, kz0, njack, ra_jack
ra_jack = (0, 15, 120, 160, 180, 200, 220, 240, 340, 360)
njack = len(ra_jack)
def z_comp(r_fibre):
"""Sigmoid function fit to redshift succcess given r_fibre,
from misc.zcomp."""
p = (22.42, 2.55, 2.24)
return (1.0/(1 + np.exp(p[1]*(r_fibre-p[0]))))**p[2]
# Select galaxies in given redshift range and that satisfy cmass
# selection criteria
t = Table.read(infile)
ntot = len(t)
g_mod = t['MODELMAG_G']
r_mod = t['MODELMAG_R']
i_mod = t['MODELMAG_I']
i_cmod = t['CMODELMAGCOR_I']
i_fib2 = t['FIBER2MAGCOR_I']
d_perp = (r_mod - i_mod) - (g_mod - r_mod)/8
sel = ((t['Z'] >= self.zlimits[0]) * (t['Z'] < self.zlimits[1]) *
(i_cmod >= 17.5) * (i_cmod < 19.9) * (i_fib2 < 21.5) *
(i_cmod < 19.86 + 1.6(d_perp - 0.8)) * (d_perp > 0.55))
t = t[sel]
nsel = len(t)
print(nsel, 'out of', ntot, 'galaxies selected')
t.rename_column('Z', 'z')
omega_l = t.meta['OMEGA_L']
kz0 = t.meta['Z0']
self.area = t.meta['AREA'] * (math.pi/180.0)**2
try:
self.Q = t.meta['Q']
self.P = t.meta['P']
except KeyError:
pass
cosmo = util.CosmoLookup(H0, omega_l, self.zlimits, P=self.P)
kcorr_fix(t, 'PCOEFF_G', self.zlimits)
kcorr_fix(t, 'PCOEFF_R', self.zlimits)
kcorr_fix(t, 'PCOEFF_I', self.zlimits)
g_model = [Magnitude(t['MODELMAG_G'][i], t['z'][i], t['PCOEFF_G'][i],
self.cosmo, self.kcorr, self.ecorr, band='g') for i in range(len(t))]
r_model = [Magnitude(t['MODELMAG_R'][i], t['z'][i], t['PCOEFF_R'][i],
self.cosmo, self.kcorr, self.ecorr, band='r') for i in range(len(t))]
i_model = [Magnitude(t['MODELMAG_I'][i], t['z'][i], t['PCOEFF_I'][i],
self.cosmo, self.kcorr, self.ecorr, band='i') for i in range(len(t))]
i_cmodel = [Magnitude(t['CMODELMAGCOR_I'][i], t['z'][i], t['PCOEFF_I'][i],
self.cosmo, self.kcorr, self.ecorr, band='i') for i in range(len(t))]
i_fib2 = [Magnitude(t['FIBER2MAGCOR_I'][i], t['z'][i], t['PCOEFF_I'][i],
self.cosmo, self.kcorr, self.ecorr, band='i') for i in range(len(t))]
# Copy required columns to new table
self.t = t['RA', 'DEC', 'z', 'PCOEFF_G', 'PCOEFF_R', 'PCOEFF_I']
self.t['g_model'] = g_model
self.t['r_model'] = r_model
self.t['i_model'] = i_model
self.t['i_cmodel'] = i_cmodel
self.t['i_fib2'] = i_fib2
# Finally calculate visibility limits and hence Vmax
self.vis_calc((sel_cmass_mag_lo, sel_cmass_mag_hi, sel_cmass_fib_mag,
sel_cmass_ri, sel_cmass_mag_dperp, sel_cmass_dperp))
self.vmax_calc()
self.assign_jackknife('galaxies')
# Completeness weight
# imcomp = np.interp(t['R_SB'], sb_tab, comp_tab)
# zcomp = z_comp(t['FIBERMAG_R'])
# self.t['cweight'] = np.clip(1.0/(imcomp*zcomp), 1, wmax)
self.t['cweight'] = np.ones(len(self.t), dtype=np.bool)
# self.t['use'] = np.ones(len(self.t), dtype=np.bool)
def area_calc(self, radius=1.0, order=6):
"""Calculate survey area from MOC map."""
coords = SkyCoord(self.t['RA'], self.t['DEC'], unit='deg')
m = pymoc.util.catalog.catalog_to_moc(coords, radius=radius, order=order)
self.area = m.area
print('area:', m.area)
pymoc.util.plot.plot_moc(m)
def add_sersic_index(self):
"""Add r-band Sersic index."""
st = Table.read(sersic_file)
st = st['CATAID', 'GALINDEX_r']
self.t = join(self.t, st, keys='CATAID', join_type='left',
metadata_conflicts=metadata_conflicts)
def add_sersic_phot(self):
"""Add Sersic photometry."""
st = Table.read(sersic_file)
et = Table.read(ext_file)
st = join(st, et, keys='CATAID', metadata_conflicts=metadata_conflicts)
st['R_SERSIC'] = st['GALMAG10RE_r'] - st['A_r']
st['R_SB_SERSIC'] = st['GALMUEAVG_r'] - st['A_r']
st = st['CATAID', 'R_SERSIC', 'R_SB_SERSIC']
t = self.t
z = t['z']
t = join(t, st, keys='CATAID', join_type='left',
metadata_conflicts=metadata_conflicts)
t['ABSMAG_R_SERSIC'] = (t['R_SERSIC'] - cosmo.dist_mod(z) -
t['KCORR_R'] + self.ecorr(z))
t['R_SB_SERSIC_ABS'] = (t['R_SB_SERSIC'] - 10*np.log10(1 + z) -
t['KCORR_R'] + self.ecorr(z))
# Exclude objects with suspect Sersic photometry (Loveday+2015, Sec 2)
bt = Table.read(bnfile)
t = join(t, bt, keys='CATAID', join_type='left',
metadata_conflicts=metadata_conflicts)
ncand = len(t)
sel = (t['objid'].mask *
(np.fabs(t['R_PETRO'] - t['R_SERSIC']) < 2))
self.t = t[sel]
nclean = len(self.t)
print(nclean, 'out of', ncand, 'targets with clean Sersic photometry')
# pdb.set_trace()
def read_grouped(self, galfile=g3cgal, grpfile=g3cfof,
kref=0.1, mass_est='lum', nmin=5,
edge_min=0.9, masscomp=False, find_vis_groups=False):
"""Read grouped gama, mock or simulated catalogues.
Set mass_est='true' for true mock halo masses."""
# See Robotham+2011 Sec 2.2 for k- and e- corrections
if 'mock' in grpfile or 'Mock' in grpfile or 'sim' in grpfile:
kz0 = 0.2
self.kmean = mock_pcoeff
self.kcorr = Kcorr(kz0, mock_pcoeff)
obs = False
else:
obs = True
# Read and select groups
grp = Table.read(grpfile)
ngrp_orig = len(grp)
if mass_est == 'sim':
self.meta = grp.meta
self.meta['nmin'] = nmin
if mass_est == 'true':
grp['log_mass'] = np.log10(grp['HaloMass'])
grp['Nfof'] = grp['Nhalo']
key = 'HaloID'
else:
if mass_est == 'lum':
grp['log_mass'] = 13.98 + 1.16*(np.log10(grp['LumB']) - 11.5)
if mass_est == 'dyn':
grp['log_mass'] = np.log10(grp['MassAfunc'])
key = 'GroupID'
sel = (np.array(grp['Nfof'] >= nmin) *
np.array(grp['IterCenZ'] >= self.zlimits[0]) *
np.array(grp['IterCenZ'] < self.zlimits[1]))
if mass_est != 'sim':
sel *= (np.array(grp['GroupEdge'] > edge_min) *
np.logical_not(grp['log_mass'].mask))
grp = grp[sel]
# grp.rename_column('IterCenRA', 'RA')
# grp.rename_column('IterCenDEC', 'DEC')
# grp.rename_column('IterCenZ', 'z')
try:
self.area = grp.meta['AREA'] * (math.pi/180.0)**2
except KeyError:
self.area = 180 * (math.pi/180.0)**2
print(len(grp), 'out of ', ngrp_orig, ' groups selected')
# Read galaxies
# Don't additionally select on redshift, as that may
# drop group membership below nmin
gal = Table.read(galfile)
try:
gal.rename_column('Z', 'z')
gal['GalID'] = gal['CATAID']
except KeyError:
pass
if grpfile == g3cmockhalo:
gal.rename_column('RankIterCenH', 'RankIterCen')
if grpfile == g3cmockfof:
gal.rename_column('RankIterCenF', 'RankIterCen')
if obs:
kcfile = kctemp.format(int(10*kref))
kc_table = Table.read(kcfile)
kz0 = kc_table.meta['Z0']
self.kcorr = Kcorr(kz0)
gal = join(gal, kc_table, keys='CATAID',
metadata_conflicts=metadata_conflicts)
tc = Table.read(tcfile)
tc = tc['CATAID', 'R_SB', 'FIBERMAG_R']
gal = join(gal, tc, keys='CATAID',
metadata_conflicts=metadata_conflicts)
else:
gal['PCOEFF_R'] = np.tile(mock_pcoeff, (len(gal), 1))
g = join(grp, gal, metadata_conflicts=metadata_conflicts) # keys=key
g['r_petro'] = [Magnitude(g['Rpetro'][i], g['z'][i], g['PCOEFF_R'][i],
self.cosmo, self.kcorr, self.ecorr, band='r')
for i in range(len(g))]
self.t = g
if grpfile == g3cfof:
self.stellar_mass()
self.add_sersic_index()
# First determine luminosity-based zhi, needed for group zhi
self.vis_calc((self.sel_mag_lo, self.sel_mag_hi))
self.t['zhi_lum'] = self.t['zhi']
if masscomp:
self.masscomp = masscomp
self.mass_limit_sel()
self.comp_limit_mass()
self.vis_calc((self.sel_mass_hi, self.sel_mass_lo,
self.sel_mag_lo, self.sel_mag_hi))
if 'mock' in grpfile or 'Mock' in grpfile or 'sim' in grpfile:
self.t['jack'] = self.t['Volume']
else:
self.assign_jackknife('galaxies')
self.kcorr_fix('PCOEFF_R')
# Store array of masses of groups in which each galaxy would be visible
if find_vis_groups:
ngal = len(self.t)
group_masses = []
grp_z = grp['IterCenZ']
for igal in range(ngal):
sel = (self.t['zlo'][igal] <= grp_z) * (grp_z < self.t['zhi'][igal])
if 'mock' in grpfile or 'sim' in grpfile:
sel *= self.t['Volume'][igal] == grp['Volume']
group_masses.append(grp['log_mass'][sel])
self.t['group_masses'] = group_masses
# Calculate redshift limits
# Group redshift limits correspond to that of nmin'th brightest galaxy
# (or faintest if not all galaxies have all measurements)
# Galaxy redshift limits then given by min(zlim_grp, zlim_gal)
gg = self.t.group_by(key)
idxs = gg.groups.indices
grp['GalID'] = np.zeros(len(grp), dtype=int)
grp['Rpetro'] = np.zeros(len(grp))
grp['zhi'] = np.zeros(len(grp))
for igrp in range(len(gg.groups)):
ilo = idxs[igrp]
ihi = idxs[igrp+1]
idxsort = np.argsort(gg['Rpetro'][ilo:ihi])
idx = min(nmin, len(idxsort)) - 1
galid = gg['GalID'][ilo:ihi][idxsort][idx]
grp['GalID'][igrp] = galid
grp['Rpetro'][igrp] = gg['Rpetro'][ilo:ihi][idxsort][idx]
grp['zhi'][igrp] = gg['zhi_lum'][ilo:ihi][idxsort][idx]
for igal in range(ihi-ilo):
gg['zhi'][ilo:ihi][igal] = min(
gg['zhi'][ilo:ihi][igal], grp['zhi'][igrp])
# Select only galaxies where zhi > zmin to avoid Vmax=0
# This will mess up group indices, so redefine them
sel = gg['zhi'] > self.zlimits[0]
self.t = gg[sel]
self.t = self.t.group_by(key)
self.grp = grp
# Completeness weight
if obs:
imcomp = np.interp(self.t['R_SB'], sb_tab, comp_tab)
zcomp = z_comp(self.t['FIBERMAG_R'])
self.t['cweight'] = np.clip(1.0/(imcomp*zcomp), 1, wmax)
else:
self.t['cweight'] = np.ones(len(self.t))
def read_groups(self, grpfile=g3cfof, mass_est='lum', nmin=5, edge_min=0.9):
"""Read gama, mock or simulated catalogue group centres.
Set mass_est='true' for true mock halo masses."""
# See Robotham+2011 Sec 2.2 for k- and e- corrections
if 'mock' or 'sim' in grpfile:
kz0 = 0.2
self.kmean = mock_pcoeff
self.kcorr = Kcorr(kz0, mock_pcoeff)
# Read and select groups
grp = Table.read(grpfile)
ngrp_orig = len(grp)
if mass_est == 'sim':
self.meta = grp.meta
self.meta['nmin'] = nmin
if mass_est == 'true':
grp['log_mass'] = np.log10(grp['HaloMass'])
grp['Nfof'] = grp['Nhalo']
else:
if mass_est == 'lum':
grp['log_mass'] = 13.98 + 1.16*(np.log10(grp['LumB']) - 11.5)
if mass_est == 'dyn':
grp['log_mass'] = np.log10(grp['MassAfunc'])
sel = (np.array(grp['Nfof'] >= nmin) *
np.array(grp['IterCenZ'] >= self.zlimits[0]) *
np.array(grp['IterCenZ'] < self.zlimits[1]))
if mass_est != 'sim':
sel *= (np.array(grp['GroupEdge'] > edge_min) *
np.logical_not(grp['log_mass'].mask))
grp = grp[sel]
grp.rename_column('IterCenRA', 'RA')
try:
grp.rename_column('IterCenDec', 'DEC')
except KeyError:
grp.rename_column('IterCenDEC', 'DEC')
grp.rename_column('IterCenZ', 'z')
try:
self.area = grp.meta['AREA'] * (math.pi/180.0)**2
except KeyError:
self.area = 180 * (math.pi/180.0)**2
print(len(grp), 'out of ', ngrp_orig, ' groups selected')
self.t = grp
self.t['cweight'] = np.ones(len(self.t))
self.assign_jackknife('groups')
def read_gama_groups_old(self, nmin=5, edge_min=0.9):
"""Read data for GAMA group centres. Group visibility limits and Vmax
correspond to that of nmin'th ranked member."""
# Read and select groups meeting selection criteria
t = Table.read(g3cfof)
t['log_mass'] = 13.98 + 1.16*(np.log10(t['LumB']) - 11.5)
sel = (np.array(t['GroupEdge'] > edge_min) *
np.logical_not(t['log_mass'].mask) *
np.array(t['Nfof'] >= nmin) *
np.array(t['IterCenZ'] >= self.zlimits[0]) *
np.array(t['IterCenZ'] < self.zlimits[1]))
grps = t[sel]
grps.rename_column('IterCenRA', 'RA')
grps.rename_column('IterCenDec', 'DEC')
grps.rename_column('IterCenZ', 'z')
grps = grps['GroupID', 'Nfof', 'RA', 'DEC', 'z', 'log_mass']
# Obtain CATAID of nmin'th brightest member of each group
gmem = Table.read(g3cgal)
gmem = gmem['GroupID', 'CATAID', 'Rpetro']
g = join(grps, gmem, keys='GroupID',
metadata_conflicts=metadata_conflicts)
gg = g.group_by('GroupID')
idxs = gg.groups.indices
grps['CATAID'] = np.zeros(len(grps), dtype=int)
for igrp in range(len(gg.groups)):
ilo = idxs[igrp]
ihi = idxs[igrp+1]
idxsort = np.argsort(gg['Rpetro'][ilo:ihi])
cataid = gg['CATAID'][ilo:ihi][idxsort][nmin-1]
grps['CATAID'][igrp] = cataid
# Left join groups with GAMA galaxy data
gal = GalSample()
gal.read_gama(nq_min=2)
del gal.t['RA']
del gal.t['DEC']
del gal.t['z']
self.t = join(grps, gal.t, keys='CATAID', join_type='left',
metadata_conflicts=metadata_conflicts)
# self.z0 = gal.z0
# Finally calculate visibility limits and hence Vmax
self.vis_calc((sel_gama_mag_lo, sel_gama_mag_hi))
self.vmax_calc()
self.assign_jackknife('groups')
def read_gama_mocks(self, infile=g3cmockgal):
"""Read gama galaxy mocks that come with group catalogue."""
# See Robotham+2011 Sec 2.2 fopr k- and e- corrections
# global cosmo, kz0, ez0
kz0 = 0.2
self.kmean = mock_pcoeff
self.kcorr = Kcorr(kz0, mock_pcoeff)
t = Table.read(infile)
try:
self.area = t.meta['AREA'] * (math.pi/180.0)**2
except KeyError:
self.area = 144 * (math.pi/180.0)**2
# Select mock galaxies in given redshift range
try:
t.rename_column('Z', 'z')
except KeyError:
pass
sel = (t['z'] >= self.zlimits[0]) * (t['z'] < self.zlimits[1])
t = t[sel]
r_petro = [Magnitude(t['Rpetro'][i], t['z'][i], mock_pcoeff,
self.cosmo, self.kcorr, self.ecorr, band='r')
for i in range(len(t))]
# Copy required columns to new table
self.t = t
self.t['r_petro'] = r_petro
self.t['PCOEFF_R'] = np.tile(mock_pcoeff, (len(t), 1))
self.t['cweight'] = np.ones(len(self.t))
# self.t['jack'] = self.t['Volume']
self.assign_jackknife('galaxies')
def read_gama_group_mocks_old(self, mass_est='lum', nmin=5, edge_min=0.9):
"""Read gama group mocks. Set mass_est='true' for true halo masses."""
# See Robotham+2011 Sec 2.2 for k- and e- corrections
global cosmo, kz0, ez0
kz0 = 0.2
ez0 = 0
pcoeff = (0.2085, 1.0226, 0.5237, 3.5902, 2.3843)
self.kmean = pcoeff
if mass_est == 'true':
t = Table.read(g3cmockhalo)
t['log_mass'] = np.log10(t['HaloMass'])
t['Nfof'] = t['Nhalo']
key = 'HaloID'
else:
t = Table.read(g3cmockfof)
if mass_est == 'lum':
t['log_mass'] = 13.98 + 1.16*(np.log10(t['LumB']) - 11.5)
if mass_est == 'dyn':
t['log_mass'] = np.log10(t['MassAfunc'])
key = 'GroupID'
sel = (np.array(t['GroupEdge'] > edge_min) *
np.logical_not(t['log_mass'].mask) *
np.array(t['Nfof'] >= nmin) *
np.array(t['IterCenZ'] >= self.zlimits[0]) *
np.array(t['IterCenZ'] < self.zlimits[1]))
grps = t[sel]
grps.rename_column('IterCenRA', 'RA')
grps.rename_column('IterCenDEC', 'DEC')
grps.rename_column('IterCenZ', 'z')
grps = grps[key, 'Nfof', 'RA', 'DEC', 'z', 'log_mass', 'Volume']
print(len(grps), 'out of ', len(t), ' groups selected')
# Obtain GalID of nmin'th brightest member of each group
gmem = Table.read(g3cmockgal)
gmem = gmem['GalID', 'GroupID', 'HaloID', 'Rpetro']
g = join(grps, gmem, keys=key,
metadata_conflicts=metadata_conflicts)
gg = g.group_by(key)
idxs = gg.groups.indices
grps['GalID'] = np.zeros(len(grps), dtype=int)
grps['Rpetro'] = np.zeros(len(grps))
for igrp in range(len(gg.groups)):
ilo = idxs[igrp]
ihi = idxs[igrp+1]
idxsort = np.argsort(gg['Rpetro'][ilo:ihi])
galid = gg['GalID'][ilo:ihi][idxsort][nmin-1]
grps['GalID'][igrp] = galid
grps['Rpetro'][igrp] = gg['Rpetro'][ilo:ihi][idxsort][nmin-1]
# Left join groups with mock galaxy data
# gal = GalSample()
# gal.read_gama(nq_min=2)
# del gal.t['RA']
# del gal.t['DEC']
# del gal.t['z']
# self.t = join(grps, gal.t, keys='CATAID', join_type='left',
# metadata_conflicts=metadata_conflicts)
# self.z0 = gal.z0
#
# # Finally calculate visibility limits and hence Vmax
# self.vis_calc()
# self.vmax_calc()
# self.assign_jackknife()
# gal = Table.read(g3cmockgal)
# omega_l = 0.75
# self.area = 144 * (math.pi/180.0)**2
# cosmo = util.CosmoLookup(H0, omega_l, self.zlimits, P=self.P)
# t = join(gal, grp, # join_type='left',
# metadata_conflicts=metadata_conflicts)
## pdb.set_trace()
# # Select mock galaxies in given redshift range
# sel = (t['Z'] >= self.zlimits[0]) * (t['Z'] < self.zlimits[1])
# t = t[sel]
# t.rename_column('Z', 'z')
# Copy required columns to new table
r_petro = [Magnitude(grps['Rpetro'][i], grps['z'][i], pcoeff,
self.cosmo, self.kcorr, self.ecorr, band='r') for i in range(len(grps))]
grps['r_petro'] = r_petro
grps['PCOEFF_R'] = np.tile(pcoeff, (len(grps), 1))
grps['cweight'] = np.ones(len(grps))
# grps['use'] = np.ones(len(grps), dtype=np.bool)
# self.grps = grp
# grps['Vmax_grp'] = np.zeros(len(grps))
grps['jack'] = grps['Volume']
self.t = grps
# def read_gama_group_sim(self, nmin=5):
# """Read simulated gama groups."""
#
## See Robotham+2011 Sec 2.2 for k- and e- corrections
# global cosmo, kz0, ez0
# kz0 = 0.2
# ez0 = 0
# pcoeff = (0.2085, 1.0226, 0.5237, 3.5902, 2.3843)
# self.kmean = pcoeff
# self.area = 144 * (math.pi/180.0)**2
#
# omega_l = 0.75
# cosmo = util.CosmoLookup(H0, omega_l, self.zlimits, P=self.P)
# t = Table.read(g3csimgrp)
# key = 'GroupID'
#
# sel = (np.array(t['Nfof'] >= nmin) *
# np.array(t['z'] >= self.zlimits[0]) *
# np.array(t['z'] < self.zlimits[1]))
#
# grps = t[sel]
# print(len(grps), 'out of ', len(t), ' groups selected')
#
# # Obtain GalID of nmin'th brightest member of each group
# gmem = Table.read(g3csimgal)
# g = join(grps, gmem, keys=key,
# metadata_conflicts=metadata_conflicts)
# gg = g.group_by(key)
# idxs = gg.groups.indices
# grps['GalID'] = np.zeros(len(grps), dtype=int)
# grps['Rpetro'] = np.zeros(len(grps))
# for igrp in range(len(gg.groups)):
# ilo = idxs[igrp]
# ihi = idxs[igrp+1]
# idxsort = np.argsort(gg['Rpetro'][ilo:ihi])
# galid = gg['GalID'][ilo:ihi][idxsort][nmin-1]
# grps['GalID'][igrp] = galid
# grps['Rpetro'][igrp] = gg['Rpetro'][ilo:ihi][idxsort][nmin-1]
#
# # Copy required columns to new table
# r_petro = [Magnitude(grps['Rpetro'][i], grps['z'][i], pcoeff,
# self.cosmo, self.kcorr, self.ecorr, band='r') for i in range(len(grps))]
# grps['r_petro'] = r_petro
# grps['PCOEFF_R'] = np.tile(pcoeff, (len(grps), 1))
# grps['cweight'] = np.ones(len(grps))
## grps['use'] = np.ones(len(grps), dtype=np.bool)
## self.grps = grp
# grps['Vmax_grp'] = np.zeros(len(grps))
# grps['jack'] = grps['Volume']
# self.t = grps
#
def select(self, sel_dict=None):
"""Select galaxies that satisfy criteria in sel_dict."""
t = self.t
nin = len(t)
self.use = np.ones(len(self.t), dtype=np.bool)
if sel_dict:
for key, limits in sel_dict.items():
print(key, limits)
self.use *= ((t[key] >= limits[0]) * (t[key] < limits[1]))
for key, limits in sel_dict.items():
try:
self.info.update({'mean_' + key: np.mean(t[key][self.use])})
except TypeError:
pass
self.info.update({'mean_z': np.mean(t['z'][self.use])})
nsel = len(t[self.use])
print(nsel, 'out of', nin, 'galaxies selected')
def tsel(self):
"""Return table of selected galaxies."""
try:
return self.t[self.use]
except AttributeError:
return self.t
# def vis_calc_gama(self):
# """Add redshift visibility limits for GAMA.
# This no longer works, use vis_calc() instead."""
# self.t['zlo'] = [self.zdm(self.mlimits[0] - self.t['ABSMAG_R'][i],
# self.t['PCOEFF_R'][i])
# for i in range(len(self.t))]
# self.t['zhi'] = [self.zdm(self.mlimits[1] - self.t['ABSMAG_R'][i],
# self.t['PCOEFF_R'][i])
# for i in range(len(self.t))]
# def vis_calc_old(self, conditions):
# """Add redshift visibility limits for sample defined by conditions."""
# def z_lower(cond, igal):
# """Lower redshift limit from given condition."""
# z = self.t[igal]['z']
# zmin = self.zlimits[0]
# if (cond(zmin, igal) > 0):
# zlo = zmin
# else:
# try:
# zlo = scipy.optimize.brentq(
# cond, zmin, z,
# args=igal, xtol=1e-5, rtol=1e-5)
# except ValueError:
# zlo = z
# return zlo
# def z_upper(cond, igal):
# """Upper redshift limit from given condition."""
# z = self.t[igal]['z']
# zmax = self.zlimits[1]
# if (cond(zmax, igal) > 0):
# zhi = zmax
# else:
# try:
# zhi = scipy.optimize.brentq(
# cond, z, zmax,
# args=igal, xtol=1e-5, rtol=1e-5)
# except ValueError:
# zhi = z
# return zhi
# self.t['zlo'] = np.zeros(len(self.t))
# self.t['zhi'] = np.zeros(len(self.t))
# for igal in range(len(self.t)):
# zlo = [z_lower(cond, igal) for cond in conditions]
# zhi = [z_upper(cond, igal) for cond in conditions]
# self.t['zlo'][igal] = max(zlo)
# self.t['zhi'][igal] = min(zhi)
def vis_calc(self, conditions):
"""Add redshift visibility limits for sample defined by conditions."""
def z_lower(cond, igal):
"""Lower redshift limit from given condition."""
z = self.t[igal]['z']
zmin = self.zlimits[0]
if (cond(zmin, igal) > 0):
zlo = zmin
else:
try:
zlo = scipy.optimize.brentq(
cond, zmin, z,
args=igal, xtol=1e-5, rtol=1e-5)
except ValueError:
zlo = z
return zlo
def z_upper(cond, igal):
"""Upper redshift limit from given condition."""
z = self.t[igal]['z']
zmax = self.zlimits[1]
if (cond(zmax, igal) > 0):
zhi = zmax
else:
try:
zhi = scipy.optimize.brentq(
cond, z, zmax,
args=igal, xtol=1e-5, rtol=1e-5)
except ValueError:
zhi = z
return zhi
self.t['zlo'] = np.zeros(len(self.t))
self.t['zhi'] = np.zeros(len(self.t))
for igal in range(len(self.t)):
zlo = [z_lower(cond, igal) for cond in conditions]
zhi = [z_upper(cond, igal) for cond in conditions]
self.t['zlo'][igal] = max(zlo)
self.t['zhi'][igal] = min(zhi)
def vmax_calc(self, denfile=gama_data+'radial_density.fits'):
"""Calculate standard and density-corrected Vmax values."""
zmin, zmax = self.zlimits
nz = 100
zbins = np.linspace(zmin, zmax, nz)
Vmax_raw = np.zeros(nz)
Vmax_ec = np.zeros(nz)
Vmax_dc = np.zeros(nz)
Vmax_dec = np.zeros(nz)
if denfile:
den = Table.read(denfile)
afac = self.area