forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrenet_mnist.py
350 lines (291 loc) · 10.8 KB
/
renet_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# https://udemy.com/deep-learning-recurrent-neural-networks-in-python
import numpy as np
import pandas as pd
import theano
import theano.tensor as T
import matplotlib.pyplot as plt
from theano.tensor.nnet import conv2d
from theano.tensor.signal import downsample
from sklearn.utils import shuffle
from datetime import datetime
def error_rate(p, t):
return np.mean(p != t)
def relu(a):
return a * (a > 0)
def y2indicator(y):
N = len(y)
ind = np.zeros((N, 10))
for i in xrange(N):
ind[i, y[i]] = 1
return ind
def init_filter(shape):
w = np.random.randn(*shape) / np.sqrt(sum(shape))
return w.astype(np.float32)
def rearrange(X):
N = len(X)
out = np.zeros((N, 1, 28, 28), dtype=np.float32)
for i in xrange(N):
out[i, 0, :, :] = X[i].reshape(28, 28)
return out / 255
# expect the input image to be K x width x height
def renet_layer_lr(X, Wx, Wh, Wo, Bh, Bo, H0, w, h, wp, hp):
def recurrence(x_t, h_tm1):
dot = T.dot(Wx, x_t)
h_t = T.tanh(dot + T.dot(h_tm1, Wh) + Bh)
s_t = T.tanh(T.dot(h_t, Wo) + Bo)
return [h_t, s_t]
list_of_images = []
# lefts = []
# rights = []
for i in xrange(h/hp):
x = X[:,i*hp:(i*hp + hp),:].dimshuffle((1, 0, 2)).flatten().reshape((w/wp, X.shape[0]*wp*hp))
# reshape the row into a 2-D matrix to be fed into scan
[h1, s1], _ = theano.scan(
fn=recurrence,
sequences=x,
outputs_info=[H0, None],
n_steps=x.shape[0]
)
[h2, s2], _ = theano.scan(
fn=recurrence,
sequences=x,
outputs_info=[H0, None],
n_steps=x.shape[0],
go_backwards=True
)
# combine the last values of s1 and s2 into an image
img = T.concatenate([s1.T, s2.T])
list_of_images.append(img)
# lefts.append(s1.T)
# rights.append(s2.T)
return T.stacklists(list_of_images).dimshuffle((1, 0, 2))
def renet_layer_ud(X, Wx, Wh, Wo, Bh, Bo, H0, w, h, wp, hp):
def recurrence(x_t, h_tm1):
dot = T.dot(Wx, x_t)
h_t = T.tanh(dot + T.dot(h_tm1, Wh) + Bh)
s_t = T.tanh(T.dot(h_t, Wo) + Bo)
return [h_t, s_t]
list_of_images = []
for j in xrange(w/wp):
# x = X[:,:,j*wp:(j*wp + wp)].dimshuffle((2, 0, 1)).flatten(ndim=2)
# reshape the row into a 2-D matrix to be fed into scan
x = X[:,:,j*wp:(j*wp + wp)].dimshuffle((2, 0, 1)).flatten().reshape((h/hp, X.shape[0]*wp*hp))
[h1, s1], _ = theano.scan(
fn=recurrence,
sequences=x,
outputs_info=[H0, None],
n_steps=x.shape[0]
)
[h2, s2], _ = theano.scan(
fn=recurrence,
sequences=x,
outputs_info=[H0, None],
n_steps=x.shape[0],
go_backwards=True
)
# combine the last values of s1 and s2 into an image
img = T.concatenate([s1.T, s2.T])
list_of_images.append(img)
return T.stacklists(list_of_images).dimshuffle((1, 0, 2))
def main():
t0 = datetime.now()
# MNIST data:
# column 0 is labels
# column 1-785 is data, with values 0 .. 255
train = pd.read_csv('../large_files/train.csv').as_matrix()
train = shuffle(train)
Xtrain = rearrange( train[:-100,1:] )
Ytrain = train[:-100,0]
Ytrain_ind = y2indicator(Ytrain)
Xtest = rearrange( train[-100:,1:] )
Ytest = train[-100:,0]
Ytest_ind = y2indicator(Ytest)
max_iter = 8
print_period = 200
lr = np.float32(0.01)
reg = np.float32(0.01)
mu = np.float32(0.99)
N = Xtrain.shape[0]
M = 4096
K = 10
# New
wp, hp = 2, 2
M1 = 64 # hidden layer size
M2 = 256 # num feature maps
W1x_shape = (M1, 1*wp*hp)
W1x_init = init_filter(W1x_shape)
W1h_init = init_filter( (M1,M1) )
b1h_init = np.zeros((M1,), dtype=np.float32)
W1o_init = init_filter( (M1, M2) )
b1o_init = np.zeros((M2,), dtype=np.float32)
H01_init = init_filter( (M1,) )
M3 = 64 # hidden layer size
M4 = 256 # num feature maps
W2x_shape = (M3, 2*M2*1*1) # TODO: revert
W2x_init = init_filter(W2x_shape)
W2h_init = init_filter( (M3,M3) )
b2h_init = np.zeros((M3,), dtype=np.float32)
W2o_init = init_filter( (M3, M4) )
b2o_init = np.zeros((M4,), dtype=np.float32)
H02_init = init_filter( (M3,) )
M5 = 64
M6 = 256
W3x_shape = (M5, 2*M4*wp*hp)
W3x_init = init_filter(W3x_shape)
W3h_init = init_filter( (M5,M5) )
b3h_init = np.zeros((M5,), dtype=np.float32)
W3o_init = init_filter( (M5, M6) )
b3o_init = np.zeros((M6,), dtype=np.float32)
H03_init = init_filter( (M5,) )
M7 = 64
M8 = 256
W4x_shape = (M7, 2*M6*1*1)
W4x_init = init_filter(W4x_shape)
W4h_init = init_filter( (M7,M7) )
b4h_init = np.zeros((M7,), dtype=np.float32)
W4o_init = init_filter( (M7, M8) )
b4o_init = np.zeros((M8,), dtype=np.float32)
H04_init = init_filter( (M7,) )
# vanilla ANN weights
W5_init = np.random.randn(2*M8*7*7, M) / np.sqrt(2*M8*7*7 + M)
b5_init = np.zeros(M, dtype=np.float32)
W6_init = np.random.randn(M, K) / np.sqrt(M + K)
b6_init = np.zeros(K, dtype=np.float32)
# step 2: define theano variables and expressions
X = T.tensor3('X', dtype='float32')
Y = T.matrix('T')
W1x = theano.shared(W1x_init, 'W1x')
W1h = theano.shared(W1h_init, 'W1h')
b1h = theano.shared(b1h_init, 'b1h')
W1o = theano.shared(W1o_init, 'W1o')
b1o = theano.shared(b1o_init, 'b1o')
H01 = theano.shared(H01_init, 'H01')
W2x = theano.shared(W2x_init, 'W2x')
W2h = theano.shared(W2h_init, 'W2h')
b2h = theano.shared(b2h_init, 'b2h')
W2o = theano.shared(W2o_init, 'W2o')
b2o = theano.shared(b2o_init, 'b2o')
H02 = theano.shared(H02_init, 'H02')
W3x = theano.shared(W3x_init, 'W3x')
W3h = theano.shared(W3h_init, 'W3h')
b3h = theano.shared(b3h_init, 'b3h')
W3o = theano.shared(W3o_init, 'W3o')
b3o = theano.shared(b3o_init, 'b3o')
H03 = theano.shared(H03_init, 'H03')
W4x = theano.shared(W4x_init, 'W4x')
W4h = theano.shared(W4h_init, 'W4h')
b4h = theano.shared(b4h_init, 'b4h')
W4o = theano.shared(W4o_init, 'W4o')
b4o = theano.shared(b4o_init, 'b4o')
H04 = theano.shared(H04_init, 'H04')
W5 = theano.shared(W5_init.astype(np.float32), 'W5')
b5 = theano.shared(b5_init, 'b5')
W6 = theano.shared(W6_init.astype(np.float32), 'W6')
b6 = theano.shared(b6_init, 'b6')
params = [W1x, W1h, b1h, W1o, b1o, H01, W2x, W2h, b2h, W2o, b2o, H02, W3x, W3h, b3h, W3o, b3o, H03, W4x, W4h, b4h, W4o, b4o, H04, W5, b5, W6, b6]
# momentum changes
# dW1 = theano.shared(np.zeros(W1_init.shape, dtype=np.float32), 'dW1')
# db1 = theano.shared(np.zeros(b1_init.shape, dtype=np.float32), 'db1')
# dW2 = theano.shared(np.zeros(W2_init.shape, dtype=np.float32), 'dW2')
# db2 = theano.shared(np.zeros(b2_init.shape, dtype=np.float32), 'db2')
# dW3 = theano.shared(np.zeros(W3_init.shape, dtype=np.float32), 'dW3')
# db3 = theano.shared(np.zeros(b3_init.shape, dtype=np.float32), 'db3')
# dW4 = theano.shared(np.zeros(W4_init.shape, dtype=np.float32), 'dW4')
# db4 = theano.shared(np.zeros(b4_init.shape, dtype=np.float32), 'db4')
# forward pass
Z1 = renet_layer_lr(X, W1x, W1h, W1o, b1h, b1o, H01, 28, 28, wp, hp)
## TMP: just test the first/second layer ##
# tmp_op = theano.function(
# inputs=[X],
# outputs=Z1,
# )
# print "Xtrain[0].shape:", Xtrain[0].shape
# out = tmp_op(Xtrain[0])
# print "Z1.shape:", out.shape
Z2 = renet_layer_ud(Z1, W2x, W2h, W2o, b2h, b2o, H02, 14, 14, 1, 1)
# tmp_op2 = theano.function(
# inputs=[X],
# outputs=Z2,
# )
# out = tmp_op2(Xtrain[0])
# print "Z2.shape:", out.shape
# exit()
Z3 = renet_layer_lr(Z2, W3x, W3h, W3o, b3h, b3o, H03, 14, 14, wp, hp)
Z4 = renet_layer_ud(Z3, W4x, W4h, W4o, b4h, b4o, H04, 7, 7, 1, 1)
Z5 = relu(Z4.flatten().dot(W5) + b5)
pY = T.nnet.softmax( Z5.dot(W6) + b6)
# tmp_op3 = theano.function(
# inputs=[X],
# outputs=Z3,
# )
# out = tmp_op3(Xtrain[0])
# print "Z3.shape:", out.shape
# tmp_op4 = theano.function(
# inputs=[X],
# outputs=Z4,
# )
# out = tmp_op4(Xtrain[0])
# print "Z4.shape:", out.shape
# exit()
# define the cost function and prediction
# params = (W1, b1, W2, b2, W3, b3, W4, b4)
reg_cost = reg*np.sum((param*param).sum() for param in params)
cost = -(Y * T.log(pY)).sum() + reg_cost
prediction = T.argmax(pY, axis=1)
# step 3: training expressions and functions
# update_W1 = W1 + mu*dW1 - lr*T.grad(cost, W1)
# update_b1 = b1 + mu*db1 - lr*T.grad(cost, b1)
# update_W2 = W2 + mu*dW2 - lr*T.grad(cost, W2)
# update_b2 = b2 + mu*db2 - lr*T.grad(cost, b2)
# update_W3 = W3 + mu*dW3 - lr*T.grad(cost, W3)
# update_b3 = b3 + mu*db3 - lr*T.grad(cost, b3)
# update_W4 = W4 + mu*dW4 - lr*T.grad(cost, W4)
# update_b4 = b4 + mu*db4 - lr*T.grad(cost, b4)
updates = [(param, param - lr*T.grad(cost, param)) for param in params]
# update weight changes
# update_dW1 = mu*dW1 - lr*T.grad(cost, W1)
# update_db1 = mu*db1 - lr*T.grad(cost, b1)
# update_dW2 = mu*dW2 - lr*T.grad(cost, W2)
# update_db2 = mu*db2 - lr*T.grad(cost, b2)
# update_dW3 = mu*dW3 - lr*T.grad(cost, W3)
# update_db3 = mu*db3 - lr*T.grad(cost, b3)
# update_dW4 = mu*dW4 - lr*T.grad(cost, W4)
# update_db4 = mu*db4 - lr*T.grad(cost, b4)
train = theano.function(
inputs=[X, Y],
updates=updates,
)
# create another function for this because we want it over the whole dataset
get_prediction = theano.function(
inputs=[X, Y],
outputs=[cost, prediction],
)
print "Setup elapsed time:", (datetime.now() - t0)
t0 = datetime.now()
LL = []
t1 = t0
for i in xrange(max_iter):
print "i:", i
for j in xrange(N):
# print "j:", j
Xbatch = Xtrain[j,:]
Ybatch = Ytrain_ind[j:j+1,:]
train(Xbatch, Ybatch)
if j % print_period == 0:
cost_val = 0
prediction_val = np.zeros(100)
for k in xrange(100):
c, p = get_prediction(Xtest[k], Ytest_ind[k:k+1,:])
cost_val += c
prediction_val[k] = p
err = error_rate(prediction_val, Ytest)
print "Cost / err at iteration i=%d, j=%d: %.3f / %.2f" % (i, j, cost_val / len(Ytest), err)
t2 = datetime.now()
print "Time since last print:", (t2 - t1)
t1 = t2
LL.append(cost_val)
print "Elapsed time:", (datetime.now() - t0)
plt.plot(LL)
plt.show()
if __name__ == '__main__':
main()