Skip to content

Commit d420e16

Browse files
josejuanmartinezjsl-modelsgokhanturerJose J. Martinezgadde5300
authored
Financial NLP 1.3.0 - Release (#13184)
* Add model 2022-09-27-finassertion_time_en (#12833) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Add model 2022-09-27-finner_bert_rufacts_ru (#12838) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Add model 2022-09-28-finre_work_experience_en (#12844) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Add model 2022-09-28-finclf_bert_banking77_en (#12845) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * 2022-10-15-finre_has_ticker_en (#12939) * Add model 2022-10-15-finre_has_ticker_en * Update 2022-10-15-finre_has_ticker_en.md Co-authored-by: gokhanturer <mgturer@gmail.com> Co-authored-by: Gökhan <81560784+gokhanturer@users.noreply.github.com> * 2022-10-19-finner_financial_small_en (#12956) * Add model 2022-10-19-finner_financial_small_en * Add model 2022-10-19-finner_financial_medium_en * Update 2022-10-19-finner_financial_medium_en.md Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * Update 2022-10-19-finner_financial_medium_en.md * Update 2022-10-19-finner_financial_small_en.md * Update 2022-10-15-finre_has_ticker_en.md * Update 2022-10-15-finre_has_ticker_en.md * Add model 2022-10-20-finner_financial_large_en (#12961) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * 2022-10-22-finel_nasdaq_data_company_name_en (#12972) * Add model 2022-10-22-finel_nasdaq_data_company_name_en * Add model 2022-10-22-finel_nasdaq_data_ticker_en * Update 2022-10-22-finel_nasdaq_data_company_name_en.md * Update 2022-10-22-finel_nasdaq_data_ticker_en.md * Add model 2022-10-22-finmapper_nasdaq_data_company_name_en * Add model 2022-10-22-finmapper_nasdaq_data_ticker_en * Update 2022-10-22-finmapper_nasdaq_data_company_name_en.md Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * Add model 2022-10-22-finclf_bert_sentiment_analysis_lt (#12975) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Fixes benchmark format * 2022-10-25-finner_sec_10k_summary_en (#12988) * Add model 2022-10-25-finner_sec_10k_summary_en * Update 2022-10-25-finner_sec_10k_summary_en.md Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * Update 2022-10-15-finre_has_ticker_en.md * Update 2022-10-19-finner_financial_small_en.md * Add model 2022-11-01-finner_sec_dates_en (#13013) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Add model 2022-11-01-finre_acquisitions_subsidiaries_md_en (#13014) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * 2022-11-02-finclf_acquisitions_item_en (#13018) * Add model 2022-11-02-finclf_acquisitions_item_en * Add model 2022-11-02-finclf_work_experience_item_en Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * 2022-11-02-finre_work_experience_md_en (#13019) * Add model 2022-11-02-finre_work_experience_md_en * Update 2022-11-02-finre_work_experience_md_en.md Co-authored-by: bunyamin-polat <muhendisbp@gmail.com> Co-authored-by: Bünyamin Polat <78386903+bunyamin-polat@users.noreply.github.com> * Removes 2 model cards * 2022-11-03-finclf_acquisitions_item_en (#13029) * Add model 2022-11-03-finclf_acquisitions_item_en * Add model 2022-11-03-finclf_work_experience_item_en Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Removes model card * 2022-11-04-finre_acquisitions_subsidiary_md_en (#13037) * Add model 2022-11-04-finre_acquisitions_subsidiary_md_en * Update 2022-11-04-finre_acquisitions_subsidiary_md_en.md * Update 2022-11-04-finre_acquisitions_subsidiary_md_en.md Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * 2022-11-04-finclf_auditor_sentiment_analysis_en (#13040) * Add model 2022-11-04-finclf_auditor_sentiment_analysis_en * Update 2022-11-04-finclf_auditor_sentiment_analysis_en.md Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * Changes tokenizers * Removes empty card * Add model 2022-11-07-finre_financial_small_en (#13043) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Removes previous md version of file * Add model 2022-11-08-finre_work_experience_md_en (#13047) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Adds better pipeline * Removes cards * Add model 2022-11-08-finre_acquisitions_subsidiaries_md_en (#13050) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Fixes model names * Add model 2022-11-08-finre_work_experience_md_en (#13052) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * 2022-11-10-finclf_indian_news_sentiment_medium_en (#13063) * Add model 2022-11-10-finclf_indian_news_sentiment_medium_en * Add model 2022-11-10-finclf_indian_news_sentiment_en * Update 2022-11-10-finclf_indian_news_sentiment_en.md * Update 2022-11-10-finclf_indian_news_sentiment_medium_en.md Co-authored-by: gadde5300 <gadde5300@gmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * Update 2022-11-08-finre_work_experience_md_en.md * Update 2022-11-07-finre_financial_small_en.md * Fixes texts in auditors reports * Add model 2022-11-23-finsum_news_lg_spark_nlp_eo (#13128) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Add model 2022-11-23-finsum_news_lg_spark_nlp_en (#13130) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Delete 2022-11-23-finsum_news_lg_spark_nlp_eo.md * Update 2022-11-23-finsum_news_lg_spark_nlp_en.md * Update 2022-11-23-finsum_news_lg_spark_nlp_en.md * Add model 2022-11-23-finsum_news_xs_en (#13132) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Update 2022-11-23-finsum_news_xs_en.md * Update 2022-11-23-finsum_news_xs_en.md * Add model 2022-11-23-finsum_news_headers_md_en (#13134) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Delete 2022-11-23-finsum_news_lg_spark_nlp_en.md * Add model 2022-11-24-finsum_news_headers_lg_en (#13136) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Add model 2022-11-24-finclf_earning_broker_10k_en (#13138) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Add model 2022-11-24-finsum_news_md_en (#13145) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Update 2022-11-24-finclf_earning_broker_10k_en.md * Add model 2022-11-28-finre_earning_calls_sm_en (#13161) Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> * Update 2022-11-28-finre_earning_calls_sm_en.md * 2022-11-30-finner_german_financial_entities_de (#13172) * Add model 2022-11-30-finner_german_financial_entities_de * Update 2022-11-30-finner_german_financial_entities_de.md * Update 2022-11-30-finner_german_financial_entities_de.md Co-authored-by: gadde5300 <gadde5300@gmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * 2022-11-30-finner_earning_calls_specific_sm_en (#13174) * Add model 2022-11-30-finner_earning_calls_specific_sm_en * Add model 2022-11-30-finner_earning_calls_generic_sm_en * Add model 2022-11-30-finner_financial_xlarge_en * Update 2022-11-30-finner_earning_calls_generic_sm_en.md Added description to the labels. * Added Predicted Entities * Added Predicted Entities * Added Predicted Entities * Added Predicted Entities * Fix typos in pipeline * Update 2022-11-30-finner_earning_calls_generic_sm_en.md * Update 2022-11-30-finner_earning_calls_specific_sm_en.md * Update 2022-11-30-finner_financial_xlarge_en.md Co-authored-by: dcecchini <dadachini@hotmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * Update 2022-11-23-finsum_news_headers_md_en.md * Update 2022-11-24-finsum_news_headers_lg_en.md * Update 2022-11-24-finsum_news_md_en.md * Updates benchmarks * 2022-12-01-finclf_sec_filings_en (#13180) * Add model 2022-12-01-finclf_sec_filings_en * Update 2022-12-01-finclf_sec_filings_en.md Co-authored-by: bunyamin-polat <muhendisbp@gmail.com> Co-authored-by: Bünyamin Polat <78386903+bunyamin-polat@users.noreply.github.com> * 2022-12-02-finner_10q_xlbr_en (#13183) * Add model 2022-12-02-finner_10q_xlbr_en * Update 2022-12-02-finner_10q_xlbr_en.md * Update 2022-12-02-finner_10q_xlbr_en.md * Update 2022-12-02-finner_10q_xlbr_en.md * Update 2022-12-02-finner_10q_xlbr_en.md Co-authored-by: josejuanmartinez <jjmcarrascosa@gmail.com> Co-authored-by: Jose J. Martinez <36634572+josejuanmartinez@users.noreply.github.com> * Changes tokenizer * Update 2022-12-02-finner_10q_xlbr_en.md Co-authored-by: jsl-models <74001263+jsl-models@users.noreply.github.com> Co-authored-by: gokhanturer <mgturer@gmail.com> Co-authored-by: Gökhan <81560784+gokhanturer@users.noreply.github.com> Co-authored-by: Jose J. Martinez <jose.martinez@wayops.eu> Co-authored-by: GADDE SAI SHAILESH <69344247+gadde5300@users.noreply.github.com> Co-authored-by: bunyamin-polat <muhendisbp@gmail.com> Co-authored-by: Bünyamin Polat <78386903+bunyamin-polat@users.noreply.github.com> Co-authored-by: gadde5300 <gadde5300@gmail.com> Co-authored-by: dcecchini <dadachini@hotmail.com>
1 parent e4acdd3 commit d420e16

13 files changed

+1689
-1
lines changed
Lines changed: 117 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,117 @@
1+
---
2+
layout: model
3+
title: Financial SEC Filings Classifier
4+
author: John Snow Labs
5+
name: finclf_sec_filings
6+
date: 2022-12-01
7+
tags: [en, finance, classification, sec, licensed]
8+
task: Text Classification
9+
language: en
10+
edition: Finance NLP 1.0.0
11+
spark_version: 3.0
12+
supported: true
13+
article_header:
14+
type: cover
15+
use_language_switcher: "Python-Scala-Java"
16+
---
17+
18+
## Description
19+
20+
This model allows you to classify documents among a list of specific US Security Exchange Commission filings, as : `10-K`, `10-Q`, `8-K`, `S-8`, `3`, `4`, `Other`
21+
22+
**IMPORTANT** : This model works with the first page or first 5K characters of a document, you don't need to run it in the whole document.
23+
24+
## Predicted Entities
25+
26+
`10-K`, `10-Q`, `8-K`, `S-8`, `3`, `4`, `other`
27+
28+
{:.btn-box}
29+
<button class="button button-orange" disabled>Live Demo</button>
30+
<button class="button button-orange" disabled>Open in Colab</button>
31+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/finance/models/finclf_sec_filings_en_1.0.0_3.0_1669921534523.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
32+
33+
## How to use
34+
35+
36+
37+
<div class="tabs-box" markdown="1">
38+
{% include programmingLanguageSelectScalaPythonNLU.html %}
39+
40+
```python
41+
document_assembler = nlp.DocumentAssembler()\
42+
.setInputCol("text")\
43+
.setOutputCol("document")
44+
45+
embeddings = nlp.BertSentenceEmbeddings.pretrained("sent_bert_base_cased", "en")\
46+
.setInputCols("document")\
47+
.setOutputCol("sentence_embeddings")
48+
49+
doc_classifier = finance.ClassifierDLModel.pretrained("finclf_sec_filings", "en", "finance/models")\
50+
.setInputCols(["sentence_embeddings"])\
51+
.setOutputCol("category")
52+
53+
nlpPipeline = nlp.Pipeline(stages=[
54+
document_assembler,
55+
embeddings,
56+
doc_classifier
57+
])
58+
59+
df = spark.createDataFrame([["YOUR TEXT HERE"]]).toDF("text")
60+
61+
model = nlpPipeline.fit(df)
62+
63+
result = model.transform(df)
64+
```
65+
66+
</div>
67+
68+
## Results
69+
70+
```bash
71+
+-------+
72+
|result|
73+
+-------+
74+
|[10-K]|
75+
|[8-K]|
76+
|[10-Q]|
77+
|[S-8]|
78+
|[3]|
79+
|[4]|
80+
|[other]|
81+
```
82+
83+
{:.model-param}
84+
## Model Information
85+
86+
{:.table-model}
87+
|---|---|
88+
|Model Name:|finclf_sec_filings|
89+
|Compatibility:|Finance NLP 1.0.0+|
90+
|License:|Licensed|
91+
|Edition:|Official|
92+
|Input Labels:|[sentence_embeddings]|
93+
|Output Labels:|[class]|
94+
|Language:|en|
95+
|Size:|22.8 MB|
96+
97+
## References
98+
99+
Scrapped filings from SEC
100+
101+
## Benchmarking
102+
103+
```bash
104+
class precision recall f1-score support
105+
106+
10-K 0.97 0.82 0.89 40
107+
10-Q 0.94 0.94 0.94 35
108+
3 0.80 0.95 0.87 41
109+
4 0.94 0.76 0.84 42
110+
8-K 0.81 0.94 0.87 32
111+
S-8 0.91 0.93 0.92 44
112+
other 0.98 0.98 0.98 41
113+
114+
accuracy 0.90 275
115+
macro-avg 0.91 0.90 0.90 275
116+
weighted-avg 0.91 0.90 0.90 275
117+
```
Lines changed: 226 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,226 @@
1+
---
2+
layout: model
3+
title: Earning Calls Financial NER (Generic, sm)
4+
author: John Snow Labs
5+
name: finner_earning_calls_generic_sm
6+
date: 2022-11-30
7+
tags: [en, financial, ner, earning, calls, licensed]
8+
task: Named Entity Recognition
9+
language: en
10+
edition: Finance NLP 1.0.0
11+
spark_version: 3.0
12+
supported: true
13+
article_header:
14+
type: cover
15+
use_language_switcher: "Python-Scala-Java"
16+
---
17+
18+
## Description
19+
20+
This is a `sm` (small) version of a financial model trained on Earning Calls transcripts to detect financial entities (NER model).
21+
This model is called `Generic` as it has fewer labels in comparison with the `Specific` version.
22+
23+
Please note this model requires some tokenization configuration to extract the currency (see python snippet below).
24+
25+
The currently available entities are:
26+
- AMOUNT: Numeric amounts, not percentages
27+
- ASSET: Current or Fixed Asset
28+
- ASSET_DECREASE: Decrease in the asset possession/exposure
29+
- ASSET_INCREASE: Increase in the asset possession/exposure
30+
- CF: Total cash flow 
31+
- CF_DECREASE: Relative decrease in cash flow
32+
- CF_INCREASE: Relative increase in cash flow
33+
- COUNT: Number of items (not monetary, not percentages).
34+
- CURRENCY: The currency of the amount
35+
- DATE: Generic dates in context where either it's not a fiscal year or it can't be asserted as such given the context
36+
- EXPENSE: An expense or loss
37+
- EXPENSE_DECREASE: A piece of information saying there was an expense decrease in that fiscal year
38+
- EXPENSE_INCREASE: A piece of information saying there was an expense increase in that fiscal year
39+
- FCF: Free Cash Flow
40+
- FISCAL_YEAR: A date which expresses which month the fiscal exercise was closed for a specific year
41+
- KPI: Key Performance Indicator, a quantifiable measure of performance over time for a specific objective
42+
- KPI_DECREASE: Relative decrease in a KPI
43+
- KPI_INCREASE: Relative increase in a KPI
44+
- LIABILITY: Current or Long-Term Liability (not from stockholders)
45+
- LIABILITY_DECREASE: Relative decrease in liability
46+
- LIABILITY_INCREASE: Relative increase in liability
47+
- ORG: Mention to a company/organization name
48+
- PERCENTAGE: : Numeric amounts which are percentages
49+
- PROFIT: Profit or also Revenue
50+
- PROFIT_DECLINE: A piece of information saying there was a profit / revenue decrease in that fiscal year
51+
- PROFIT_INCREASE: A piece of information saying there was a profit / revenue increase in that fiscal year
52+
- TICKER: Trading symbol of the company
53+
54+
You can also check for the Relation Extraction model which connects these entities together.
55+
56+
## Predicted Entities
57+
58+
`AMOUNT`, `ASSET`, `ASSET_DECREASE`, `ASSET_INCREASE`, `CF`, `CF_DECREASE`, `CF_INCREASE`, `COUNT`, `CURRENCY`, `DATE`, `EXPENSE`, `EXPENSE_DECREASE`, `EXPENSE_INCREASE`, `FCF`, `FISCAL_YEAR`, `KPI`, `KPI_DECREASE`, `KPI_INCREASE`, `LIABILITY`, `LIABILITY_DECREASE`, `LIABILITY_INCREASE`, `ORG`, `PERCENTAGE`, `PROFIT`, `PROFIT_DECLINE`, `PROFIT_INCREASE`, `TICKER`
59+
60+
61+
{:.btn-box}
62+
<button class="button button-orange" disabled>Live Demo</button>
63+
<button class="button button-orange" disabled>Open in Colab</button>
64+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/finance/models/finner_earning_calls_generic_sm_en_1.0.0_3.0_1669839690938.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
65+
66+
## How to use
67+
68+
69+
70+
<div class="tabs-box" markdown="1">
71+
{% include programmingLanguageSelectScalaPythonNLU.html %}
72+
```python
73+
document_assembler = nlp.DocumentAssembler()\
74+
.setInputCol("text")\
75+
.setOutputCol("document")
76+
77+
sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl","xx")\
78+
.setInputCols(["document"])\
79+
.setOutputCol("sentence")
80+
81+
tokenizer = nlp.Tokenizer()\
82+
.setInputCols(["sentence"])\
83+
.setOutputCol("token")\
84+
.setContextChars(['.', ',', ';', ':', '!', '?', '*', '-', '(', ')', '', '', '$',''])
85+
86+
embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_sec_bert_base", "en") \
87+
.setInputCols("sentence", "token") \
88+
.setOutputCol("embeddings")\
89+
.setMaxSentenceLength(512)
90+
91+
ner_model = finance.NerModel.pretrained("finner_earning_calls_generic_sm", "en", "finance/models")\
92+
.setInputCols(["sentence", "token", "embeddings"])\
93+
.setOutputCol("ner")
94+
95+
ner_converter = nlp.NerConverter()\
96+
.setInputCols(["sentence", "token", "ner"])\
97+
.setOutputCol("ner_chunk")
98+
99+
pipeline = nlp.Pipeline(stages=[
100+
document_assembler,
101+
sentence_detector,
102+
tokenizer,
103+
embeddings,
104+
ner_model,
105+
ner_converter
106+
])
107+
108+
data = spark.createDataFrame([["""Adjusted EPS was ahead of our expectations at $ 1.21 , and free cash flow is also ahead of our expectations despite a $ 1.5 billion additional tax payment we made related to the R&D amortization."""]]).toDF("text")
109+
110+
model = pipeline.fit(data)
111+
112+
result = model.transform(data)
113+
114+
result.select(F.explode(F.arrays_zip('ner_chunk.result', 'ner_chunk.metadata')).alias("cols")) \
115+
.select(F.expr("cols['0']").alias("text"),
116+
F.expr("cols['1']['entity']").alias("label")).show(200, truncate = False)
117+
```
118+
119+
</div>
120+
121+
## Results
122+
123+
```bash
124+
+------------+----------+----------+
125+
| token| ner_label|confidence|
126+
+------------+----------+----------+
127+
| Adjusted| B-PROFIT| 0.9691|
128+
| EPS| I-PROFIT| 0.9954|
129+
| was| O| 1.0|
130+
| ahead| O| 1.0|
131+
| of| O| 1.0|
132+
| our| O| 1.0|
133+
|expectations| O| 1.0|
134+
| at| O| 1.0|
135+
| $|B-CURRENCY| 1.0|
136+
| 1.21| B-AMOUNT| 1.0|
137+
| ,| O| 0.9998|
138+
| and| O| 1.0|
139+
| free| B-FCF| 0.9981|
140+
| cash| I-FCF| 0.9998|
141+
| flow| I-FCF| 0.9998|
142+
| is| O| 1.0|
143+
| also| O| 1.0|
144+
| ahead| O| 1.0|
145+
| of| O| 1.0|
146+
| our| O| 1.0|
147+
|expectations| O| 1.0|
148+
| despite| O| 1.0|
149+
| a| O| 1.0|
150+
| $|B-CURRENCY| 1.0|
151+
| 1.5| B-AMOUNT| 1.0|
152+
| billion| I-AMOUNT| 0.9999|
153+
| additional| O| 0.998|
154+
| tax| O| 0.9532|
155+
| payment| O| 0.945|
156+
| we| O| 0.9999|
157+
| made| O| 1.0|
158+
| related| O| 1.0|
159+
| to| O| 1.0|
160+
| the| O| 1.0|
161+
| R&D| O| 0.9981|
162+
|amortization| O| 0.9973|
163+
| .| O| 1.0|
164+
+------------+----------+----------+
165+
```
166+
167+
{:.model-param}
168+
## Model Information
169+
170+
{:.table-model}
171+
|---|---|
172+
|Model Name:|finner_earning_calls_generic_sm|
173+
|Compatibility:|Finance NLP 1.0.0+|
174+
|License:|Licensed|
175+
|Edition:|Official|
176+
|Input Labels:|[sentence, token, embeddings]|
177+
|Output Labels:|[ner]|
178+
|Language:|en|
179+
|Size:|16.2 MB|
180+
181+
## References
182+
183+
In-house annotations on Earning Calls.
184+
185+
## Benchmarking
186+
187+
```bash
188+
label tp fp fn prec rec f1
189+
I-AMOUNT 383 1 3 0.9973958 0.992228 0.9948052
190+
B-COUNT 13 5 2 0.7222222 0.8666667 0.78787875
191+
B-AMOUNT 453 0 6 1.0 0.9869281 0.9934211
192+
I-ORG 16 0 0 1.0 1.0 1.0
193+
B-DATE 117 11 5 0.9140625 0.9590164 0.93600005
194+
B-LIABILITY_DECREASE 1 1 0 0.5 1.0 0.6666667
195+
I-LIABILITY 8 6 3 0.5714286 0.72727275 0.64000005
196+
I-EXPENSE 75 13 52 0.85227275 0.5905512 0.69767445
197+
I-KPI_INCREASE 6 3 8 0.6666667 0.42857143 0.5217392
198+
B-LIABILITY 9 4 5 0.6923077 0.64285713 0.6666667
199+
I-CF 18 1 18 0.94736844 0.5 0.6545455
200+
I-COUNT 12 2 1 0.85714287 0.9230769 0.8888889
201+
B-FCF 13 5 0 0.7222222 1.0 0.83870965
202+
B-PROFIT_INCREASE 79 22 31 0.7821782 0.7181818 0.7488152
203+
B-KPI_INCREASE 3 4 11 0.42857143 0.21428572 0.2857143
204+
B-EXPENSE 41 19 38 0.68333334 0.51898736 0.5899281
205+
I-PROFIT_DECLINE 5 7 22 0.41666666 0.18518518 0.25641027
206+
I-LIABILITY_DECREASE 1 1 0 0.5 1.0 0.6666667
207+
I-PROFIT 188 47 50 0.8 0.789916 0.79492605
208+
B-CURRENCY 440 0 1 1.0 0.9977324 0.9988649
209+
I-PROFIT_INCREASE 77 23 45 0.77 0.63114756 0.69369364
210+
I-CURRENCY 6 0 0 1.0 1.0 1.0
211+
B-CF 9 1 8 0.9 0.5294118 0.6666667
212+
B-PROFIT 147 51 40 0.74242425 0.7860963 0.7636363
213+
B-PERCENTAGE 417 2 4 0.99522674 0.99049884 0.99285716
214+
B-TICKER 13 0 0 1.0 1.0 1.0
215+
I-FISCAL_YEAR 3 0 0 1.0 1.0 1.0
216+
B-ORG 14 0 0 1.0 1.0 1.0
217+
B-EXPENSE_INCREASE 6 0 4 1.0 0.6 0.75
218+
B-EXPENSE_DECREASE 1 0 1 1.0 0.5 0.6666667
219+
B-ASSET 9 2 16 0.8181818 0.36 0.5
220+
B-FISCAL_YEAR 1 0 0 1.0 1.0 1.0
221+
I-EXPENSE_DECREASE 3 2 2 0.6 0.6 0.6
222+
I-FCF 26 15 0 0.63414633 1.0 0.7761194
223+
I-EXPENSE_INCREASE 8 0 3 1.0 0.72727275 0.84210527
224+
Macro-average 2637 255 465 0.7494908 0.64362085 0.70253296
225+
Micro-average 2637 255 465 0.9118257 0.8500967 0.8798799
226+
```

0 commit comments

Comments
 (0)