|
| 1 | +--- |
| 2 | +layout: model |
| 3 | +title: Financial Sentiment Analysis (Lithuanian) |
| 4 | +author: John Snow Labs |
| 5 | +name: finclf_bert_sentiment_analysis |
| 6 | +date: 2022-10-22 |
| 7 | +tags: [lt, legal, classification, sentiment, analysis, licensed] |
| 8 | +task: Text Classification |
| 9 | +language: lt |
| 10 | +edition: Spark NLP for Finance 1.0.0 |
| 11 | +spark_version: 3.0 |
| 12 | +supported: true |
| 13 | +article_header: |
| 14 | + type: cover |
| 15 | +use_language_switcher: "Python-Scala-Java" |
| 16 | +--- |
| 17 | + |
| 18 | +## Description |
| 19 | + |
| 20 | +This is a Lithuanian Sentiment Analysis Text Classifier, which will retrieve if a text is either expression a Positive Emotion or a Negative one. |
| 21 | + |
| 22 | +## Predicted Entities |
| 23 | + |
| 24 | +`APPLICANT`, `COMMISSION/CHAMBER`, `ECHR`, `OTHER`, `STATE`, `THIRD PARTIES` |
| 25 | + |
| 26 | +{:.btn-box} |
| 27 | +<button class="button button-orange" disabled>Live Demo</button> |
| 28 | +<button class="button button-orange" disabled>Open in Colab</button> |
| 29 | +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/finance/models/finclf_bert_sentiment_analysis_lt_1.0.0_3.0_1666475378253.zip){:.button.button-orange.button-orange-trans.arr.button-icon} |
| 30 | + |
| 31 | +## How to use |
| 32 | + |
| 33 | + |
| 34 | + |
| 35 | +<div class="tabs-box" markdown="1"> |
| 36 | +{% include programmingLanguageSelectScalaPythonNLU.html %} |
| 37 | +```python |
| 38 | +# Test classifier in Spark NLP pipeline |
| 39 | +document_assembler = nlp.DocumentAssembler() \ |
| 40 | + .setInputCol('text') \ |
| 41 | + .setOutputCol('document') |
| 42 | + |
| 43 | +tokenizer = nlp.Tokenizer() \ |
| 44 | + .setInputCols(['document']) \ |
| 45 | + .setOutputCol('token') |
| 46 | + |
| 47 | +# Load newly trained classifier |
| 48 | +sequenceClassifier_loaded = finance.BertForSequenceClassification.pretrained("finclf_bert_sentiment_analysis", "lt", "finance/models")\ |
| 49 | + .setInputCols(["document",'token'])\ |
| 50 | + .setOutputCol("class") |
| 51 | + |
| 52 | +pipeline = Pipeline(stages=[ |
| 53 | + document_assembler, |
| 54 | + tokenizer, |
| 55 | + sequenceClassifier_loaded |
| 56 | +]) |
| 57 | + |
| 58 | +# Generating example |
| 59 | +example = spark.createDataFrame([["Pagalbos paraðiuto laukiantis verslas priemones vertina teigiamai tik yra keli „jeigu“"]]).toDF("text") |
| 60 | + |
| 61 | +result = pipeline.fit(example).transform(example) |
| 62 | + |
| 63 | +# Checking results |
| 64 | +result.select("text", "class.result").show(truncate=False) |
| 65 | +``` |
| 66 | + |
| 67 | +</div> |
| 68 | + |
| 69 | +## Results |
| 70 | + |
| 71 | +```bash |
| 72 | ++---------------------------------------------------------------------------------------+------+ |
| 73 | +|text |result| |
| 74 | ++---------------------------------------------------------------------------------------+------+ |
| 75 | +|Pagalbos paraðiuto laukiantis verslas priemones vertina teigiamai tik yra keli „jeigu“|[POS] | |
| 76 | ++---------------------------------------------------------------------------------------+------+ |
| 77 | +``` |
| 78 | + |
| 79 | +{:.model-param} |
| 80 | +## Model Information |
| 81 | + |
| 82 | +{:.table-model} |
| 83 | +|---|---| |
| 84 | +|Model Name:|finclf_bert_sentiment_analysis| |
| 85 | +|Compatibility:|Spark NLP for Finance 1.0.0+| |
| 86 | +|License:|Licensed| |
| 87 | +|Edition:|Official| |
| 88 | +|Input Labels:|[document, token]| |
| 89 | +|Output Labels:|[class]| |
| 90 | +|Language:|lt| |
| 91 | +|Size:|406.6 MB| |
| 92 | +|Case sensitive:|true| |
| 93 | +|Max sentence length:|128| |
| 94 | + |
| 95 | +## References |
| 96 | + |
| 97 | +An in-house augmented version of [this dataset](https://www.kaggle.com/datasets/rokastrimaitis/lithuanian-financial-news-dataset-and-bigrams?select=dataset%28original%29.csv) removing NEU tag |
| 98 | + |
| 99 | +## Benchmarking |
| 100 | + |
| 101 | +```bash |
| 102 | +label precision recall f1-score support |
| 103 | + |
| 104 | + NEG 0.80 0.76 0.78 509 |
| 105 | + POS 0.90 0.92 0.91 1167 |
| 106 | + |
| 107 | + accuracy 0.87 1676 |
| 108 | + macro avg 0.85 0.84 0.84 1676 |
| 109 | +weighted avg 0.87 0.87 0.87 1676 |
| 110 | +``` |
0 commit comments