Skip to content

Commit 69fae36

Browse files
2024-09-07-fine_tuned_distilbert_pipeline_en (#14398)
* Add model 2024-09-10-classicalchineseofficetitletranslation_pipeline_zh * Add model 2024-09-11-cebuanolanguagemodel_pipeline_en * Add model 2024-09-11-coha1830s_en * Add model 2024-09-11-rob3rta_pipeline_en * Add model 2024-09-11-rob3rta_en * Add model 2024-09-05-roberta_qa_base_filtered_cuad_en * Add model 2024-09-07-burmese_awesome_qa_model_bilalkhan2024_en * Add model 2024-09-09-maltese_coref_english_russian_gender_pipeline_en * Add model 2024-09-09-roberta_pretraining_hindi_en * Add model 2024-09-08-legalbert_for_rhetorical_role_labeling_pipeline_en * Add model 2024-09-08-burmese_awesome_qa_model_vendedora_pipeline_en * Add model 2024-09-09-southern_sotho_all_mpnet_finetuned_arabic_2481_en * Add model 2024-09-06-distilbert_base_uncased_finetuned_imdb_galeng_pipeline_en * Add model 2024-09-09-spanish_spanglish_pipeline_en * Add model 2024-09-06-albert_base_v2_finetuned_irony_pipeline_en * Add model 2024-09-07-marian_finetuned_kde4_english_tonga_tonga_islands_french_accelerate_naninya_pipeline_en * Add model 2024-09-10-hate_hate_balance_random1_seed0_bernice_pipeline_en * Add model 2024-09-10-opus_big_fine_tfidf_wce_unsampled_en * Add model 2024-09-10-opus_big_fine_tfidf_wce_unsampled_pipeline_en * Add model 2024-09-08-fine_tuned_model_2_en * Add model 2024-09-11-finetuning_sentiment_model_3000_samples_2_arminhsn_en * Add model 2024-09-11-buy_others1_en * Add model 2024-09-11-burmese_awesome_setfit_model_laxman_en * Add model 2024-09-11-579_setfit_v2_en * Add model 2024-09-08-quality_model_apr3_pipeline_en * Add model 2024-09-11-twitter_roberta_large_emoji_latest_en * Add model 2024-09-08-opus_maltese_english_romanian_finetuned_english_tonga_tonga_islands_romanian_adi_vc_en * Add model 2024-09-11-setfit_model_miscellaneous_misinformation_en * Add model 2024-09-11-8_shot_sta_head_skhead_pipeline_en * Add model 2024-09-11-bislama_all_mpnet_base_v2_finetuned_webnlg2020_relevance_en * Add model 2024-09-11-orig_refpydst_5p_referredstates_split_v1_en * Add model 2024-09-11-setfit_model_feb11_misinformation_on_trudeau_pipeline_en * Add model 2024-09-11-esci_spanish_mpnet_crossencoder_en * Add model 2024-09-11-frpile_gpl_test_pipeline_all_mpnet_base_v2_mistral_notrescaled_20000_en * Add model 2024-09-11-frpile_gpl_test_pipeline_all_mpnet_base_v2_mistral_notrescaled_20000_pipeline_en * Add model 2024-09-10-whisper_medium_congo_swahili_drc_kat_1_pipeline_en * Add model 2024-09-08-sent_roberta_base_exp_8_pipeline_xx * Add model 2024-09-09-cold_fusion_itr6_seed1_en * Add model 2024-09-11-deberta_v3_sta_class_pipeline_en * Add model 2024-09-11-roberta_large_corener_en * Add model 2024-09-11-jobberta_base_pipeline_en * Add model 2024-09-11-roberta_base_epoch_39_pipeline_en * Add model 2024-09-11-roberta_base_turkish_uncased_turkcell_tr * Add model 2024-09-11-coha1870s_pipeline_en * Add model 2024-09-07-ner_newsagency_bert_french_fr * Add model 2024-09-07-sent_xlm_r_with_transliteration_average_pipeline_en * Add model 2024-09-10-roberta_base_finetuned_squad_v2_hcy5561_en * Add model 2024-09-11-deberta_v3_base_civil_comments_wilds_100k_pipeline_en * Add model 2024-09-08-distilbert_base_uncased_distilbert_model_en * Add model 2024-09-11-roberta_embeddings_pmc_med_bio_mlm_roberta_large_en * Add model 2024-09-09-iwslt17_marian_big_ctx4_cwd2_english_french_en * Add model 2024-09-07-burmese_awesome_qa_model_alisadavtyan_pipeline_en * Add model 2024-09-04-distilbert_base_uncased_finetuned_imdb1004_pipeline_en * Add model 2024-09-07-xlm_roberta_base_finetuned_panx_english_rupe_en * Add model 2024-09-08-product_review_information_density_detection_distilbert_en * Add model 2024-09-07-xlm_roberta_base_kyrgyzner_ttimur_ky * Add model 2024-09-08-ner_oee_danieladif_pipeline_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_german_french_hbtemari_pipeline_en * Add model 2024-09-04-burmese_awesome_wnut_model_subham123_en * Add model 2024-09-11-distilbert_base_uncased_odm_zphr_0st26sd_pipeline_en * Add model 2024-09-11-db_aca_2_2_pipeline_en * Add model 2024-09-08-sentiment_analysis_fine_tuned_3000samples_pipeline_en * Add model 2024-09-09-distilbert_base_uncased_finetuned_squad_d5716d28_iotengtr_pipeline_en * Add model 2024-09-11-test_trainer_swam80_en * Add model 2024-09-09-hf_nlp_course_distilbert_base_uncased_finetuned_imdb_pipeline_en * Add model 2024-09-11-deberta_v3_large_survey_nepal_bhasa_fact_related_passage_rater_half_gpt4_pipeline_en * Add model 2024-09-09-esci_us_base_mpnet_crossencoder_pipeline_en * Add model 2024-09-08-dataequity_opus_maltese_german_tagalog_pipeline_en * Add model 2024-09-10-multi_qa_mpnet_base_dot_v1_covidqa_search_4_epochs_pipeline_en * Add model 2024-09-10-distilbert_base_multilingual_finetuned_telugu_xx * Add model 2024-09-07-chemberta_pubchem1m_shard00_140k_pipeline_en * Add model 2024-09-08-burmese_awesome_wnut_saviolation_pipeline_en * Add model 2024-09-11-uzn_roberta_base_ft_qa_russian_maltese_tonga_tonga_islands_uzn_uz * Add model 2024-09-10-psais_multi_qa_mpnet_base_dot_v1_5shot_pipeline_en * Add model 2024-09-10-xlm_roberta_base_finetuned_panx_all_fraisier_en * Add model 2024-09-08-distilbert_base_uncased_finetuned_cola_rach_transformer_pipeline_en * Add model 2024-09-04-burmese_awesome_wnut_model_adisur_pipeline_en * Add model 2024-09-06-mo_en * Add model 2024-09-07-sent_xlm_roberta_longformer_base_4096_markussagen_en * Add model 2024-09-10-takalane_zul_roberta_en * Add model 2024-09-11-chemberta_masked_30_pubchem_shard00_1m_150k_steps_en * Add model 2024-09-11-sentimentanalysistilia_pipeline_en * Add model 2024-09-08-custommodel_yelp_hanyundudddd_en * Add model 2024-09-10-distilbert_base_uncased_finetuned_imdb_26ryss_en * Add model 2024-09-10-q2d_half_5_pipeline_en * Add model 2024-09-10-distilbert_base_uncased_finetuned_ag_final_en * Add model 2024-09-09-xlm_roberta_base_danish_ner_daner_pipeline_da * Add model 2024-09-06-distilbert_base_uncased_finetuned_squad_inseokteo_pipeline_en * Add model 2024-09-07-bert_base_uncase_finetuned_en * Add model 2024-09-09-dummy_model_ericchu000_en * Add model 2024-09-11-awsblogbert_en * Add model 2024-09-11-coha1950s_en * Add model 2024-09-11-collab_distilbert_base_uncased_ft_dolly_ut_en * Add model 2024-09-11-iwslt17_marian_small_ctx6_cwd0_english_french_pipeline_en * Add model 2024-09-11-results_mubarakb_en * Add model 2024-09-10-philai_embed_all_test_2024_03_14_8epoch_pipeline_en * Add model 2024-09-08-invited_the_patient_tonga_tonga_islands_a_dialogue_bert_first128_pipeline_en * Add model 2024-09-08-lab1_random_chenxin0903_en * Add model 2024-09-08-all_mpnet_base_v2_lr_5e_8_margin_1_epoch_3_pipeline_en * Add model 2024-09-11-codebert_base_password_strength_classifier_normal_weight_balancing_pipeline_en * Add model 2024-09-09-biomedbert_finetuned_pico_adishingote_en * Add model 2024-09-10-maltese_hitz_basque_english_eu * Add model 2024-09-10-inam_reranker_pipeline_en * Add model 2024-09-05-bert_token_classifier_foodbase_ner_en * Add model 2024-09-09-distilbert_qa_model_smrynrz20_en * Add model 2024-09-10-opus_maltese_english_russian_finetuned_english_tonga_tonga_islands_russian_amls_pipeline_en * Add model 2024-09-10-roberta_finetuned_subjqa_movies_2_skhaghighi_pipeline_en * Add model 2024-09-10-burmese_setfit_model12_en * Add model 2024-09-11-20ng_fewshot_en * Add model 2024-09-10-xlm_roberta_base_finetuned_panx_german_french_takehirako_pipeline_en * Add model 2024-09-08-translation_english_tonga_tonga_islands_turkish_1_pipeline_en * Add model 2024-09-04-roberta_base_squad2_finetuned_dourc_squad_pipeline_en * Add model 2024-09-11-roberta_legal_german_cased_german_legal_squad_part_augmented_2000_de * Add model 2024-09-06-multilingual_hate_speech_robacofi_xx * Add model 2024-09-10-xlm_roberta_base_finetuned_kinyarwanda_kinyarwanda_finetuned_kinyarwanda_tweets_finetuned_kinyarwanda_sent2_pipeline_en * Add model 2024-09-11-contrastiveloss_pipeline_en * Add model 2024-09-09-gsarti_opus_maltese_tc_english_polish_yhavinga_ccmatrix_finetune_en * Add model 2024-09-08-sent_afro_xlmr_mini_finetuned_kintweetsb_pipeline_en * Add model 2024-09-11-distilbert_base_zero_shot_classifier_uncased_mnli_en * Add model 2024-09-07-xlm_roberta_base_finetuned_panx_german_french_smilingface88_pipeline_en * Add model 2024-09-11-roberta_base_epoch_39_en * Add model 2024-09-11-roberta_vmw_mrqa_old_but_not_that_old_en * Add model 2024-09-08-opus_big_enfr_ft_ailem_2021_pipeline_en * Add model 2024-09-11-babyberta_wikipedia1_2_5m_aochildes_2_5m_with_masking_seed3_finetuned_squad_en * Add model 2024-09-05-vietnews_roberta_base_en * Add model 2024-09-08-579_stmodel_v3a_pipeline_en * Add model 2024-09-11-deberta_v3_base_finetuned_polifact_pipeline_en * Add model 2024-09-11-roberta_finetuned_subjqa_movies_2_zeeshanmalagori_pipeline_en * Add model 2024-09-11-coha1870s_en * Add model 2024-09-11-roberta_base_squad2_train_i_pipeline_en * Add model 2024-09-07-bsc_bio_ehr_spanish_livingner_humano_pipeline_es * Add model 2024-09-08-xlm_roberta_base_finetuned_panx_italian_shinta0615_pipeline_en * Add model 2024-09-09-opus_maltese_indonesian_english_ccmatrix_warmup_pipeline_en * Add model 2024-09-11-roberta_large_few_shot_k_128_finetuned_squad_seed_4_pipeline_en * Add model 2024-09-11-roberta_base_first_2_chars_acl2023_pipeline_en * Add model 2024-09-06-bert_large_cased_pipeline_en * Add model 2024-09-10-bert_classifier_prot_bfd_membrane_pipeline_en * Add model 2024-09-08-dummy_model_itsramyah_pipeline_en * Add model 2024-09-09-dummy_model_mayank1999_en * Add model 2024-09-09-bertweet_large_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_german_french_wilcomply_en * Add model 2024-09-11-mathbert_en * Add model 2024-09-11-nepberta_prazzwal07_en * Add model 2024-09-11-tb_bert_fpt_en * Add model 2024-09-10-indicbertv2_swati_xx * Add model 2024-09-09-tounsify_v0_9_shuffle_en * Add model 2024-09-11-mdeberta_base_v3_8_en * Add model 2024-09-04-roberta_echr_truncated_facts_all_labels_pipeline_en * Add model 2024-09-11-gbert_biom_translation_large_en * Add model 2024-09-08-mix_english_vietnamese_4m_pipeline_en * Add model 2024-09-11-gbert_biom_translation_large_pipeline_en * Add model 2024-09-11-deberta_v3_large_cola_yiiino_en * Add model 2024-09-10-agnews_padding40model_pipeline_en * Add model 2024-09-09-burmese_awesome_qa_model_4_pipeline_en * Add model 2024-09-11-bert_large_uncased_whole_word_masking_pipeline_en * Add model 2024-09-11-distilbert_base_uncased_work_zphr_2st_en * Add model 2024-09-07-dummy_model_bhaskar_gautam_en * Add model 2024-09-09-babyberta_childes_2_5_0_1_finetuned_qasrl_en * Add model 2024-09-10-emoji_emoji_temporal_bertweet_large_pipeline_en * Add model 2024-09-08-romanurduclassification_en * Add model 2024-09-08-n_roberta_imdb_padding10model_en * Add model 2024-09-08-setfit_model_feb11_misinformation_on_numbers_attendance_support_etc_pipeline_en * Add model 2024-09-10-osm_nlp_setfit_en * Add model 2024-09-08-xlm_roberta_base_finetuned_panx_german_french_ultimecia_en * Add model 2024-09-11-isearmodel_v1_pipeline_en * Add model 2024-09-08-opus_maltese_russian_english_finetuned_en * Add model 2024-09-09-exalt_baseline_pipeline_en * Add model 2024-09-10-xlm_roberta_base_finetuned_panx_german_affahrizain_pipeline_en * Add model 2024-09-11-sentimentanalysistilia_en * Add model 2024-09-08-lab1_finetuning_twobjohn_en * Add model 2024-09-11-arwiki_20230101_roberta_mlm_nobots_pipeline_ar * Add model 2024-09-10-xlm_roberta_base_finetuned_panx_german_sebalnakji_pipeline_en * Add model 2024-09-07-distilbert_finetuned_squadv2_lusic_pipeline_en * Add model 2024-09-10-bert_classifier_arabic_relation_extraction_xx * Add model 2024-09-10-redsen_en * Add model 2024-09-11-awsblogbert_pipeline_en * Add model 2024-09-11-answerquestions_en * Add model 2024-09-08-classification_al_en * Add model 2024-09-08-8_shot_sta_head_trained_lr1e_4_pipeline_en * Add model 2024-09-08-masked_lm_pipeline_en * Add model 2024-09-07-burmese_awesome_model_akash24_pipeline_en * Add model 2024-09-10-sciverbinary_model_train_dev_data_robertal_label_neutral_detector_pipeline_en * Add model 2024-09-11-roberta_ner_roberta_base_biomedical_clinical_spanish_finetuned_ner_craft_augmented_spanish_es * Add model 2024-09-11-distilbertbaselineoneepoch_en * Add model 2024-09-10-all_mpnet_base_v2_lr_2e_7_margin_5_epoch_3_en * Add model 2024-09-10-distilbert_base_uncased_finetuned_imdb_accelerate_sogochang_pipeline_en * Add model 2024-09-11-africanberta_en * Add model 2024-09-06-sent_checkpoint_12600_pipeline_en * Add model 2024-09-07-toy_qa_en * Add model 2024-09-07-distilbert_base_uncased_finetuned_imdb_raincheck_pipeline_en * Add model 2024-09-11-baseline_v1_en * Add model 2024-09-08-lenu_limburgish_pipeline_en * Add model 2024-09-07-trainer_chapter4_rishabh_sucks_at_code_pipeline_en * Add model 2024-09-09-lab1_random_zeen0_pipeline_en * Add model 2024-09-10-roberta_english_v2_pipeline_en * Add model 2024-09-11-working_en * Add model 2024-09-08-tner_xlm_roberta_base_ontonotes5_earnings21_non_normalized_and_normalized_en * Add model 2024-09-07-dummy_model_alejoa_pipeline_en * Add model 2024-09-11-distilbert_base_uncased_finetuned_emotion_randomwish_en * Add model 2024-09-11-zh2en20_en * Add model 2024-09-09-distilbert_base_uncased_finetuned_imdb_accelerate_linqus_en * Add model 2024-09-09-distilroberta_base_mrpc_glue_oscar_salas4_pipeline_en * Add model 2024-09-09-bert_southern_sotho_qa_multi_qa_mpnet_base_cos_v1_epochs_10_pipeline_en * Add model 2024-09-10-scenario_non_kd_scr_d2_data_cardiffnlp_tweet_sentiment_multilingual_all4_xx * Add model 2024-09-11-results_sppm_en * Add model 2024-09-08-finance_news_classifier_pipeline_en * Add model 2024-09-11-chechen_sentiment_en * Add model 2024-09-11-9_shot_sta_head_train_1e_5_pipeline_en * Add model 2024-09-08-roberta_qoura_pipeline_en * Add model 2024-09-10-all_mpnet_base_v2_lr_5e_8_margin_1_epoch_1_en * Add model 2024-09-09-java_roberta_tara_small_pipeline_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_english_wendao_123_en * Add model 2024-09-11-entitycs_39_pep_malay_mlm_xlmr_base_xx * Add model 2024-09-09-mpnet_pd_books_pipeline_en * Add model 2024-09-11-output_mask_step_pretraining_plus_contr_roberta_large_second_epochs_1_pipeline_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_italian_kbleejohn_en * Add model 2024-09-11-xlmr_base_hausa_5e_5_en * Add model 2024-09-11-xlmr_base_hausa_5e_5_pipeline_en * Add model 2024-09-11-angela_shuffle_diacritics_entities_test_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_german_jtunguyen_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_german_jtunguyen_pipeline_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_english_urashima_pipeline_en * Add model 2024-09-07-sent_afro_xlmr_base_finetuned_kintweetsd_en * Add model 2024-09-11-cs505_nercoqe_xlm_subject_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_italian_omersubasi_pipeline_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_all_bluetree99_en * Add model 2024-09-09-rise_ner4_en * Add model 2024-09-11-punjabi_roberta_ner_pipeline_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_german_lglt_pipeline_en * Add model 2024-09-11-roberta_embeddings_pmc_med_bio_mlm_roberta_large_pipeline_en * Add model 2024-09-09-tse_fewshot_en * Add model 2024-09-11-nepberta_prazzwal07_pipeline_en * Add model 2024-09-11-distilbert_base_uncased_finetuned_emotion_ultimecia_pipeline_en * Add model 2024-09-09-marian_finetuned_kde4_english_tonga_tonga_islands_french_desmondbai_pipeline_en * Add model 2024-09-11-xlm_robereta_base_finetuned_panx_all_pipeline_en * Add model 2024-09-11-xlm_roberta_base_finetuned_panx_french_patnelt60_pipeline_en * Add model 2024-09-11-xlm_roberta_base_ontonotesv5_english_en * Add model 2024-09-04-distilbert_base_uncased_biored_finetuned_en * Add model 2024-09-08-xlm_roberta_base_finetuned_panx_all_pockypocky_en * Add model 2024-09-08-lab1_finetuning_sfliao_en * Add model 2024-09-11-xlm_r_galen_nubes_pipeline_es * Add model 2024-09-11-cat_sayula_popoluca_xlmr_5_en * Add model 2024-09-11-bert_large_uncased_whole_word_masking_en * Add model 2024-09-11-deberta_v3_large_survey_nepal_bhasa_fact_related_passage_rater_half_gpt4_en * Add model 2024-09-11-arabertv2_model_en * Add model 2024-09-07-cree_albert_5e_en * Add model 2024-09-10-distilbert_base_uncased_unlearned_sun_pipeline_en * Add model 2024-09-11-opus_maltese_english_arabic_finetuned_english_tonga_tonga_islands_arabic_abdulabeyg_pipeline_en * Add model 2024-09-11-lab1_random_prakulsharma_en * Add model 2024-09-11-opus_maltese_english_bkm_final_60_en --------- Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
1 parent 6eb7df9 commit 69fae36

File tree

1,331 files changed

+108523
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,331 files changed

+108523
-0
lines changed
Lines changed: 86 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,86 @@
1+
---
2+
layout: model
3+
title: English roberta_finetuned_subjqa_movies_2_mustafa1923 RoBertaForQuestionAnswering from mustafa1923
4+
author: John Snow Labs
5+
name: roberta_finetuned_subjqa_movies_2_mustafa1923
6+
date: 2024-09-01
7+
tags: [en, open_source, onnx, question_answering, roberta]
8+
task: Question Answering
9+
language: en
10+
edition: Spark NLP 5.4.2
11+
spark_version: 3.0
12+
supported: true
13+
engine: onnx
14+
annotator: RoBertaForQuestionAnswering
15+
article_header:
16+
type: cover
17+
use_language_switcher: "Python-Scala-Java"
18+
---
19+
20+
## Description
21+
22+
Pretrained RoBertaForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`roberta_finetuned_subjqa_movies_2_mustafa1923` is a English model originally trained by mustafa1923.
23+
24+
{:.btn-box}
25+
<button class="button button-orange" disabled>Live Demo</button>
26+
<button class="button button-orange" disabled>Open in Colab</button>
27+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/roberta_finetuned_subjqa_movies_2_mustafa1923_en_5.4.2_3.0_1725206868726.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
28+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/roberta_finetuned_subjqa_movies_2_mustafa1923_en_5.4.2_3.0_1725206868726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
29+
30+
## How to use
31+
32+
33+
34+
<div class="tabs-box" markdown="1">
35+
{% include programmingLanguageSelectScalaPythonNLU.html %}
36+
```python
37+
38+
documentAssembler = MultiDocumentAssembler() \
39+
.setInputCol(["question", "context"]) \
40+
.setOutputCol(["document_question", "document_context"])
41+
42+
spanClassifier = RoBertaForQuestionAnswering.pretrained("roberta_finetuned_subjqa_movies_2_mustafa1923","en") \
43+
.setInputCols(["document_question","document_context"]) \
44+
.setOutputCol("answer")
45+
46+
pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
47+
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
48+
pipelineModel = pipeline.fit(data)
49+
pipelineDF = pipelineModel.transform(data)
50+
51+
```
52+
```scala
53+
54+
val documentAssembler = new MultiDocumentAssembler()
55+
.setInputCol(Array("question", "context"))
56+
.setOutputCol(Array("document_question", "document_context"))
57+
58+
val spanClassifier = RoBertaForQuestionAnswering.pretrained("roberta_finetuned_subjqa_movies_2_mustafa1923", "en")
59+
.setInputCols(Array("document_question","document_context"))
60+
.setOutputCol("answer")
61+
62+
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
63+
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
64+
val pipelineModel = pipeline.fit(data)
65+
val pipelineDF = pipelineModel.transform(data)
66+
67+
```
68+
</div>
69+
70+
{:.model-param}
71+
## Model Information
72+
73+
{:.table-model}
74+
|---|---|
75+
|Model Name:|roberta_finetuned_subjqa_movies_2_mustafa1923|
76+
|Compatibility:|Spark NLP 5.4.2+|
77+
|License:|Open Source|
78+
|Edition:|Official|
79+
|Input Labels:|[document_question, document_context]|
80+
|Output Labels:|[answer]|
81+
|Language:|en|
82+
|Size:|464.1 MB|
83+
84+
## References
85+
86+
https://huggingface.co/mustafa1923/roberta-finetuned-subjqa-movies_2
Lines changed: 94 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,94 @@
1+
---
2+
layout: model
3+
title: English finetuning_sentiment_model_3000_samples_vishalpanda10 DistilBertForSequenceClassification from vishalpanda10
4+
author: John Snow Labs
5+
name: finetuning_sentiment_model_3000_samples_vishalpanda10
6+
date: 2024-09-02
7+
tags: [en, open_source, onnx, sequence_classification, distilbert]
8+
task: Text Classification
9+
language: en
10+
edition: Spark NLP 5.5.0
11+
spark_version: 3.0
12+
supported: true
13+
engine: onnx
14+
annotator: DistilBertForSequenceClassification
15+
article_header:
16+
type: cover
17+
use_language_switcher: "Python-Scala-Java"
18+
---
19+
20+
## Description
21+
22+
Pretrained DistilBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuning_sentiment_model_3000_samples_vishalpanda10` is a English model originally trained by vishalpanda10.
23+
24+
{:.btn-box}
25+
<button class="button button-orange" disabled>Live Demo</button>
26+
<button class="button button-orange" disabled>Open in Colab</button>
27+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuning_sentiment_model_3000_samples_vishalpanda10_en_5.5.0_3.0_1725305707642.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
28+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuning_sentiment_model_3000_samples_vishalpanda10_en_5.5.0_3.0_1725305707642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
29+
30+
## How to use
31+
32+
33+
34+
<div class="tabs-box" markdown="1">
35+
{% include programmingLanguageSelectScalaPythonNLU.html %}
36+
```python
37+
38+
documentAssembler = DocumentAssembler() \
39+
.setInputCol('text') \
40+
.setOutputCol('document')
41+
42+
tokenizer = Tokenizer() \
43+
.setInputCols(['document']) \
44+
.setOutputCol('token')
45+
46+
sequenceClassifier = DistilBertForSequenceClassification.pretrained("finetuning_sentiment_model_3000_samples_vishalpanda10","en") \
47+
.setInputCols(["documents","token"]) \
48+
.setOutputCol("class")
49+
50+
pipeline = Pipeline().setStages([documentAssembler, tokenizer, sequenceClassifier])
51+
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
52+
pipelineModel = pipeline.fit(data)
53+
pipelineDF = pipelineModel.transform(data)
54+
55+
```
56+
```scala
57+
58+
val documentAssembler = new DocumentAssembler()
59+
.setInputCols("text")
60+
.setOutputCols("document")
61+
62+
val tokenizer = new Tokenizer()
63+
.setInputCols(Array("document"))
64+
.setOutputCol("token")
65+
66+
val sequenceClassifier = DistilBertForSequenceClassification.pretrained("finetuning_sentiment_model_3000_samples_vishalpanda10", "en")
67+
.setInputCols(Array("documents","token"))
68+
.setOutputCol("class")
69+
70+
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
71+
val data = Seq("I love spark-nlp").toDS.toDF("text")
72+
val pipelineModel = pipeline.fit(data)
73+
val pipelineDF = pipelineModel.transform(data)
74+
75+
```
76+
</div>
77+
78+
{:.model-param}
79+
## Model Information
80+
81+
{:.table-model}
82+
|---|---|
83+
|Model Name:|finetuning_sentiment_model_3000_samples_vishalpanda10|
84+
|Compatibility:|Spark NLP 5.5.0+|
85+
|License:|Open Source|
86+
|Edition:|Official|
87+
|Input Labels:|[document, token]|
88+
|Output Labels:|[class]|
89+
|Language:|en|
90+
|Size:|249.5 MB|
91+
92+
## References
93+
94+
https://huggingface.co/vishalpanda10/finetuning-sentiment-model-3000-samples
Lines changed: 86 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,86 @@
1+
---
2+
layout: model
3+
title: English albert_base_qa_2_k_fold_2 AlbertForQuestionAnswering from mateiaass
4+
author: John Snow Labs
5+
name: albert_base_qa_2_k_fold_2
6+
date: 2024-09-03
7+
tags: [en, open_source, onnx, question_answering, albert]
8+
task: Question Answering
9+
language: en
10+
edition: Spark NLP 5.5.0
11+
spark_version: 3.0
12+
supported: true
13+
engine: onnx
14+
annotator: AlbertForQuestionAnswering
15+
article_header:
16+
type: cover
17+
use_language_switcher: "Python-Scala-Java"
18+
---
19+
20+
## Description
21+
22+
Pretrained AlbertForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`albert_base_qa_2_k_fold_2` is a English model originally trained by mateiaass.
23+
24+
{:.btn-box}
25+
<button class="button button-orange" disabled>Live Demo</button>
26+
<button class="button button-orange" disabled>Open in Colab</button>
27+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/albert_base_qa_2_k_fold_2_en_5.5.0_3.0_1725341906099.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
28+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/albert_base_qa_2_k_fold_2_en_5.5.0_3.0_1725341906099.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
29+
30+
## How to use
31+
32+
33+
34+
<div class="tabs-box" markdown="1">
35+
{% include programmingLanguageSelectScalaPythonNLU.html %}
36+
```python
37+
38+
documentAssembler = MultiDocumentAssembler() \
39+
.setInputCol(["question", "context"]) \
40+
.setOutputCol(["document_question", "document_context"])
41+
42+
spanClassifier = AlbertForQuestionAnswering.pretrained("albert_base_qa_2_k_fold_2","en") \
43+
.setInputCols(["document_question","document_context"]) \
44+
.setOutputCol("answer")
45+
46+
pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
47+
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
48+
pipelineModel = pipeline.fit(data)
49+
pipelineDF = pipelineModel.transform(data)
50+
51+
```
52+
```scala
53+
54+
val documentAssembler = new MultiDocumentAssembler()
55+
.setInputCol(Array("question", "context"))
56+
.setOutputCol(Array("document_question", "document_context"))
57+
58+
val spanClassifier = AlbertForQuestionAnswering.pretrained("albert_base_qa_2_k_fold_2", "en")
59+
.setInputCols(Array("document_question","document_context"))
60+
.setOutputCol("answer")
61+
62+
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
63+
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
64+
val pipelineModel = pipeline.fit(data)
65+
val pipelineDF = pipelineModel.transform(data)
66+
67+
```
68+
</div>
69+
70+
{:.model-param}
71+
## Model Information
72+
73+
{:.table-model}
74+
|---|---|
75+
|Model Name:|albert_base_qa_2_k_fold_2|
76+
|Compatibility:|Spark NLP 5.5.0+|
77+
|License:|Open Source|
78+
|Edition:|Official|
79+
|Input Labels:|[document_question, document_context]|
80+
|Output Labels:|[answer]|
81+
|Language:|en|
82+
|Size:|42.0 MB|
83+
84+
## References
85+
86+
https://huggingface.co/mateiaass/albert-base-qa-2-k-fold-2
Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
---
2+
layout: model
3+
title: English cultural_heritage_metadata_accuracy_mnli_pipeline pipeline XlmRoBertaForSequenceClassification from davanstrien
4+
author: John Snow Labs
5+
name: cultural_heritage_metadata_accuracy_mnli_pipeline
6+
date: 2024-09-03
7+
tags: [en, open_source, pipeline, onnx]
8+
task: Text Classification
9+
language: en
10+
edition: Spark NLP 5.5.0
11+
spark_version: 3.0
12+
supported: true
13+
annotator: PipelineModel
14+
article_header:
15+
type: cover
16+
use_language_switcher: "Python-Scala-Java"
17+
---
18+
19+
## Description
20+
21+
Pretrained XlmRoBertaForSequenceClassification, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cultural_heritage_metadata_accuracy_mnli_pipeline` is a English model originally trained by davanstrien.
22+
23+
{:.btn-box}
24+
<button class="button button-orange" disabled>Live Demo</button>
25+
<button class="button button-orange" disabled>Open in Colab</button>
26+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cultural_heritage_metadata_accuracy_mnli_pipeline_en_5.5.0_3.0_1725396428724.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
27+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cultural_heritage_metadata_accuracy_mnli_pipeline_en_5.5.0_3.0_1725396428724.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
28+
29+
## How to use
30+
31+
32+
33+
<div class="tabs-box" markdown="1">
34+
{% include programmingLanguageSelectScalaPythonNLU.html %}
35+
```python
36+
37+
pipeline = PretrainedPipeline("cultural_heritage_metadata_accuracy_mnli_pipeline", lang = "en")
38+
annotations = pipeline.transform(df)
39+
40+
```
41+
```scala
42+
43+
val pipeline = new PretrainedPipeline("cultural_heritage_metadata_accuracy_mnli_pipeline", lang = "en")
44+
val annotations = pipeline.transform(df)
45+
46+
```
47+
</div>
48+
49+
{:.model-param}
50+
## Model Information
51+
52+
{:.table-model}
53+
|---|---|
54+
|Model Name:|cultural_heritage_metadata_accuracy_mnli_pipeline|
55+
|Type:|pipeline|
56+
|Compatibility:|Spark NLP 5.5.0+|
57+
|License:|Open Source|
58+
|Edition:|Official|
59+
|Language:|en|
60+
|Size:|807.5 MB|
61+
62+
## References
63+
64+
https://huggingface.co/davanstrien/cultural_heritage_metadata_accuracy_mnli
65+
66+
## Included Models
67+
68+
- DocumentAssembler
69+
- TokenizerModel
70+
- XlmRoBertaForSequenceClassification

0 commit comments

Comments
 (0)