-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconvex_hull_cluster.py
915 lines (716 loc) · 26.5 KB
/
convex_hull_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
# @Author: Joey Teng <Toujour>
# @Date: 20-Nov-2017
# @Email: joey.teng.dev@gmail.com
# @Filename: convex_hull_cluster.py
# @Last modified by: Toujour
# @Last modified time: 24-Jan-2018
"""Obtain clusters and calculate meta-features.
Args:
dataset_filename (string): path to the dataset
Predefined types:
Point (dict): {'coordinate': (float, ...), 'label': int}
Dataset (list): list of dict objects:
[Point, ...]
Vertex (tuple): Point['coordinate']
Vertices (list): [Vertex, ...]
Output files:
dataset_filename.output.json: calculated meta-features.
dataset_filename.clusters.json: calculated clusters.
dataset_filename.log: log file
"""
import collections
import functools
import itertools
import json
import logging
import logging.handlers
import multiprocessing.pool
import os
import queue
import sys
import numpy
import scipy.special
import meta_features
PROCESS_COUNT = int(os.cpu_count() / 2)
def _tree():
"""Define a recursive structure of collection.defaultdict(self)."""
return collections.defaultdict(_tree)
def initialize_logger(filename=None, level=logging.DEBUG, filemode='w'):
"""Initialize a logger in module logging.
Args:
filename (string, optional): Defaults to None.
The path of log file
By default, logger will stream to the standard output
level (logging level, optional): Defaults to logging.INFO
filemode (string, optional): Defaults to 'w'.
'w' or 'a', overwrite or append
Returns:
logger: [description]
"""
log_format = '%(asctime)s %(levelname)s\n' + \
' %(filename)s:%(lineno)s: %(name)s %(message)s'
if filename is None:
handler = logging.StreamHandler()
else:
handler = logging.handlers.RotatingFileHandler(
filename=filename, mode=filemode)
handler.setFormatter(logging.Formatter(log_format))
logger = logging.getLogger('LOG')
logger.addHandler(handler)
logger.setLevel(level)
return logger, handler
def load_dataset(filename):
"""Load data from a csv file.
Args:
filename (string): path of input file.
CSV format
[coordinate, ...] + [label]
Returns:
Dataset: dataset
"""
return [(
lambda point: {
'coordinate': tuple(map(float, point[:-1])),
'label': int(point[-1])})
(string.strip().rstrip().split(','))
for string in open(filename, 'r').read()
.strip().rstrip().split('\n')]
def signed_volume(vertices):
"""Calculate the signed volume of n-dimensional simplex.
The simplex is defined by (n + 1) vertices
Reference:
Wedge Product: http://mathworld.wolfram.com/WedgeProduct.html
Args:
vertices (Vertices): Define the n-d simplex.
Returns:
tuple: (
sign (float):
-1, 0 or 1, the sign of the signed volume,
logvolume (float):
The natural log of the absolute value of the volume)
If the signed volume is zero, then sign will be 0
and logvolume will be -Inf.
In all cases, the signed volume is equal to sign * np.exp(logvolume)
Reference:
From scipy manual
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet
"""
dimension = len(vertices[0])
(sign, logvolume) = numpy.linalg.slogdet(
numpy.stack(vertices[1:]) +
numpy.array(vertices[0]) * numpy.ones((dimension, dimension)) * -1)
return (sign, logvolume)
def squared_area(vertices):
"""Calculte the squared area of the n-1-d simplex.
Calculate the squared area of (n - 1)-dimensional simplex defined by
n vertices in n-dimensional space
Reference:
Wedge Product: http://mathworld.wolfram.com/WedgeProduct.html
Args:
vertices (Vertices): Define the n-1-d simplex
Returns:
float: The natural log of the squared area of the simplex
Reference:
From scipy manual
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet
"""
dimension = len(vertices[0])
matrix = numpy.matrix(
numpy.stack(vertices[1:]) +
numpy.array(vertices[0]) *
numpy.ones((len(vertices) - 1, dimension)) * -1)
logvolume = numpy.linalg.slogdet(matrix * matrix.T)[1] # sign, logvolume
return logvolume
def check_inside(face, instance, edge=None, area=None):
"""Check if the instance given is at the inner side of the face.
Args:
face (Vertices): [description]
instance (Vertex): [description]
edge (Vertices, optional): Defaults to None.
By default, edge = face[:-1]
Used to calculate the area and
thus check when instance is on the same plane with the face.
area (float, optional): Defaults to None.
By default, area = squared_area(face)
Returns:
tuple: (
inside (bool),
new face generated with (edge + pivot) (Vertices),
new squared_area calculated using new face (float))
"""
edge = edge or face[:-1]
area = area or squared_area(face)
sign, logvolume = signed_volume(form_face(face, instance))
_face = form_face(edge, instance)
_area = squared_area(_face)
if ((numpy.isclose([numpy.exp(logvolume)], [0]) and _area > area)
or sign < 0):
# outside
return (False, _face, _area)
return (True, _face, _area)
def check_inside_hull(hull, instance):
"""Check if the instance given is inside the hull.
Args:
hull (list): Faces on the hull
instance (Vertex): [description]
Returns:
bool: If the instance is inside the hull
"""
for face in hull:
if not check_inside(face=face, instance=instance)[0]:
return False
return True
def check_homogeneity(impurities, hull, used_pivots):
"""Check if the hull is homogeneous.
Args:
impurities (Vertices): Instances with different label
hull (list): all the faces of the hull
used_pivots (set): [description]
Returns:
bool: If the convex hull have homogeneity
"""
for instance in impurities:
if check_inside_hull(hull, instance):
return False
return True
def check_convexity(hull, used_pivots):
"""Check if the hull is convex.
Args:
hull (list): Faces on the hull
used_pivots (set): set of turning points on the hull
Returns:
bool: If the hull maintains convexity
"""
for instance in used_pivots:
if not check_inside_hull(hull, instance):
return False
return True
def pivot_on_edge(instances, edge, used_pivots):
"""Search for the next best possible vertex on the hull.
Homogeneity of the hull may not be maintained.
Args:
instances (Vertices): [description]
edge (Vertices): [description]
used_pivots (set): [description]
Recieve:
Homogeneity (bool): If the choice of the vertex will maintain
the homogeneity of the hull
Yields:
tuple:
(None, False): No vertex is found
(pivot (Vertex), homogeneity (bool)): A candidate is returned,
with the side-effect of homogeneity of the hull
(pivot (Vertex)): A candidate is found and
checking of homogeniety is requested
"""
vertices_in_edge = set(edge)
index = 0
length = len(instances)
while index < length and instances[index] in used_pivots:
index += 1
if index == length:
yield (None, False) # Not found
return
homo = {}
homo['pivot'] = instances[index]
homo['face'] = form_face(edge, homo['pivot'])
homo['area'] = squared_area(homo['face'])
homogeneity = False
check = yield (homo['pivot'], )
if check:
homogeneity = True
for instance in instances:
if instance in vertices_in_edge:
# Skip all used pivots in edge to prevent self-orientating
# Skip all instances labelled differently
# Homogeneity test is checked every round
continue
current = {}
current['pivot'] = instance
inside, current['face'], current['area'] = check_inside(
homo['face'], current['pivot'],
edge=edge, area=homo['area'])
if not inside:
check = yield (current['pivot'], )
if check:
# update
homo = current
homogeneity = True
yield (homo['pivot'], homogeneity)
return
def find_next_pivot(instances, hull, edge,
used_pivots, edge_count, impurities):
"""Find next available vertex while ensure the homogeneity.
Iteratively call pivot_on_edge(), check_homogeneity() and check_convexity()
to find the next available vertex on the hull.
Args:
instances (Vertices):
hull (list): Faces of the hull
edge (Vertex):
used_pivots (set):
edge_count (list):
impurities (Vertices):
Returns:
pivot (Vertex):
found (bool):
"""
find_pivot = pivot_on_edge(instances, edge, used_pivots)
pivot = next(find_pivot)
while len(pivot) == 1:
# Find next pivot
# Feedback: if the pivot suggested is a valid choice
if pivot[0] in used_pivots:
# Choose back will always generate a homogeneous hull
# Skip the checking process
pivot = find_pivot.send(True)
continue
check = {}
check['_face'] = form_face(edge, pivot[0])
hull.append(check['_face'])
used_pivots.add(pivot[0])
# Update Edge Count based on new face formed
check['_edges'] = [
tuple(sort_vertices(edge))
for edge in itertools.combinations(
check['_face'], len(check['_face']) - 1)]
for _edge in check['_edges']:
edge_count[_edge] += 1
check['number of face added'] = close_up_hull(
hull, edge_count, used_pivots)
check['homogeneity'] = check_homogeneity(
impurities, hull, used_pivots)
check['convexity'] = check_convexity(hull, used_pivots)
# Revert update
while check['number of face added']:
hull.pop() # close_up
check['number of face added'] -= 1
for _edge in check['_edges']:
edge_count[_edge] -= 1
used_pivots.remove(pivot[0])
hull.pop() # _face
if check['homogeneity'] and check['convexity']:
pivot = find_pivot.send(True)
else:
pivot = find_pivot.send(False)
pivot, found = pivot
if not found or pivot in used_pivots:
# best next choice is used
# stop searching and start closing up
return (pivot, False)
return (pivot, True)
def form_face(edge, pivot):
"""Form face by appending pivot and convert it into a tuple.
Args:
edge (Vertices): [description]
pivot (Vertex): [description]
Returns:
tuple: Face formed
"""
return tuple(list(edge) + [pivot])
def close_up(edge_count, used_pivots):
"""Provide faces required to close up the hull with existing vertices.
Args:
edge_count (dict): [description]
used_pivots (set): [description]
Returns:
list: Faces required.
"""
edges = []
for edge, count in edge_count.items():
if count == 1:
edges.append(edge)
faces = []
lazy_update = collections.defaultdict(int) # default = 0
while edges:
vertices = None
for (i, edge_a), (j, edge_b) in\
itertools.combinations(enumerate(edges), 2):
vertices = set(edge_a).union(set(edge_b))
if len(vertices) == len(edge_a[0]):
edges[i], edges[j], edges[-1], edges[-2] =\
edges[-1], edges[-2], edges[i], edges[j]
edges.pop()
edges.pop()
break
else:
# Cannot find a face, update edges and edges count
updated = False
for edge in lazy_update: # = .keys()
if lazy_update[edge] + edge_count[edge] == 1:
edges.append(edge)
lazy_update[edge] = 2 # Avoid duplicated edges
updated = True
if not updated:
break
continue
face = list(vertices)
for pivot in used_pivots: # = .keys()
if pivot not in vertices:
if not check_inside(face, pivot)[0]:
# det(A) = -det (B) if two cols swap (odd and even)
face[-1], face[-2] = face[-2], face[-1]
break
else:
# This edge is the first edge
return []
faces.append(tuple(face))
for edge in itertools.combinations(tuple(face), len(face) - 1):
lazy_update[tuple(sort_vertices(edge))] += 1
return faces
def close_up_hull(hull, edge_count, used_pivots):
"""Close up the hull.
Second stage.
Add all remaining faces into the hull to form
a closed simplicial complex
Args:
hull (list): All faces of the hull.
edge_count (dict): [description]
used_pivots (set): [description]
Returns:
int: Number of face added
"""
face_added = close_up(edge_count, used_pivots)
if not face_added:
face = list(hull[0])
# det(A) = -det (B) if two cols swap (odd and even)
face[-2], face[-1] = face[-1], face[-2]
face_added = [tuple(face)]
for face in face_added:
hull.append(face)
return len(face_added)
def sort_vertices(*args, **kwargs):
"""Call wrapped sorting function.
A wrapper of sorting function
Using buitin sorted() for now
Args:
same as the wrapped function
Returns
same as the wrapped function
Raises:
same as the wrapped fucntion
"""
return sorted(*args, **kwargs)
def qsort_partition(data, target=1, lhs=0, rhs=None):
"""Find the smallest [target] values in the [data] using [comp] as __lt__.
Complexity: O(n)
Args:
data (Vertices): A list of vertex in tuple type
target (int, optional): Defaults to 1.
[terget] smallest values will be returned.
lhs (int, optional): Defaults to 0. Lowest index
rhs (int, optional): Defaults to None. Highest index + 1
comp (func, Currently not supported): Defaults to __builtin__.__lt__.
Cumstomised function used for comparing
Returns:
list: [target] shallow copies of Vertex
"""
# comp is Partially supported: only used in partitioning
# but not in sorting return values
# BUG: Work around instead for now
# comp = (lambda x, y: x < y)
data = list(set(data)) # Remove repeated vertices
# BUG: Work around instead for now
# lhs = lhs or 0
# rhs = len(data) - 1 # Since [data] is updated
# position = -1
# while position != target:
# if position < target:
# lhs = position + 1
# elif position > target:
# rhs = position - 1
# pivot = data[rhs]
# index = lhs
# for i in range(lhs, rhs + 1):
# if comp(data[i], pivot):
# data[i], data[index] = data[index], data[i]
# index += 1
# data[rhs], data[index] = data[index], data[rhs]
# position = index # Return value
# return sort_vertices(data[:target])
return sort_vertices(data)[:target]
def initialize_hull(instances, impurities):
"""Initialize the hull by obtain the first face of the hull.
face: a n-1-d structure
Args:
instances (Vertices): Instances with same label
impurities (Vertices): Instances with different label
Returns:
tuple:
dimension (int): Dimension of the space, n
face (tuple): The face obtained
(Vertex, ...)
used_pivots (set): The set of used instances on the hull
set{Vertex}
edge_count (dict): Counting of how many times an edge is used
{edge (Vertices): times (int)}
"""
dimension = len(instances[0])
edge = qsort_partition(instances, target=dimension - 1)
used_pivots = set(edge)
edge_count = collections.defaultdict(int) # default = 0
face = edge
if len(edge) == dimension - 1:
pivot, found = find_next_pivot(
instances, [], edge, used_pivots, edge_count, impurities)
if found:
face = form_face(edge, pivot)
used_pivots.add(pivot)
return (dimension, tuple(face), used_pivots, edge_count)
def queuing_face(face, _queue, edge_count):
"""Push all the possible edges (n-2-d structure) into the queue.
Edges are obtained by making combinations.
No edge will join the queue more than once.
Gurantee the order that the later one in the face
will be excluded first in combinations.
Args:
face (Vertices): A face made of many vertices (n-1)
_queue (Queue): Target queue which supports .push()
edge_count (dict): Counting of how many times an edge is used
{edge (Vertices): times (int)}
"""
for i in range(len(face) - 1, -1, -1):
sub_face = []
for j, element in enumerate(face):
if i != j:
sub_face.append(element)
edge = tuple(sub_face)
sorted_edge = tuple(sort_vertices(edge))
if not edge_count[sorted_edge]:
_queue.put(edge)
edge_count[sorted_edge] += 1
def gift_wrapping(instances, impurities, logger):
"""Use modified gift-wrapping method for convex hull building.
Two stages: Finding new vertex & Close-up
Args:
instances (Vertices): List of instances with same label
impurities (Vertices): List of instances with different label
Returns:
dict:
{
"faces": All the faces,
list: [face]
"vertices": All the vertices
dict: {Vertex: True}
"dimension": Dimension of the hull
int: len(face)
}
"""
instances = sorted(set(instances))
dimension, face, used_pivots, edge_count = initialize_hull(
instances, impurities)
_queue = queue.LifoQueue()
if len(face) == dimension:
queuing_face(face, _queue, edge_count)
hull = []
hull.append(face)
vertices = [coordinate for coordinate in face]
slices = PROCESS_COUNT
all_instances = instances
instances = [
all_instances[
int(len(all_instances) * i / slices):
int(len(all_instances) * (i + 1) / slices)]
for i in range(slices)]
# First stage: find all new pivots
while not _queue.empty():
edge = _queue.get()
if edge_count[edge] > 1:
continue
pool = multiprocessing.pool.Pool(PROCESS_COUNT)
func = functools.partial(
find_next_pivot,
hull=hull, edge=edge, used_pivots=used_pivots,
edge_count=edge_count, impurities=impurities)
result = pool.map(func, instances)
# result = list(map(func, instances))
pool.close()
pool.join()
not_found = [i[0] for i in enumerate(result) if i[1][0] is None]
candidate = [element[0] for element in result if element[0]]
pivot, found = func(candidate)
if found:
pivot, found = func(list(itertools.chain(
*[instances[i] for i in not_found], [pivot])))
if not found:
continue
face = form_face(edge, pivot)
vertices.append(pivot)
used_pivots.add(pivot)
hull.append(face)
queuing_face(face, _queue, edge_count)
logger.debug("gift_wrapping: First stage complete. Starting second.")
# Second stage: close up the hull
if dimension < len(used_pivots):
close_up_hull(hull, edge_count, used_pivots)
logger.debug("gift_wrapping: Second stage complete.")
return {
"faces": hull,
"vertices": used_pivots,
"dimension": dimension}
def map_generate_tuple(*args):
"""Generate a tuple with the results from the func.
Used to assist dict(), map() to generate a dictionary.
Args:
*args (list): [0]:(
key (immutable): key of the generated dict,
func (function): function to be called,
arg (tuple): arguments for func)
Returns:
tuple: (key, func(*arg))
"""
key, func, arg = args[0][0], args[0][1], args[0][2]
return (key, func(*arg))
def clustering(dataset, logger):
"""Calculate all convex hulls.
All hulls will be pure(only contains data points with same label)
Args:
dataset (list): All the instances in the space with label
list of dict objects:
[Point, ...]
logger (logger): logger for logging
Returns:
dict: Clusters obtained separated by labels
label: clusters (list of dict objects)
[{
'vertices' (list): Turning instances on the hull
[Vertex, ...],
'points' (list) : Instances in the hull. Vertices are excluded
[Vertex, ...],
'size' (int): Number of instances covered by the hull
len(['vertices']) + len(['points']),
'volume': The volume of the hull
float(optional)
}, ...]
"""
all_instances = dataset
meta_dataset = collections.defaultdict(list)
for instance in all_instances:
meta_dataset[instance['label']].append(instance['coordinate'])
tasklist = map(
lambda item, meta_dataset=meta_dataset, logger=logger: (
item[0],
clustering_by_label,
(item[1], item[0], meta_dataset, logger)), meta_dataset.items())
# pool = multiprocessing.pool.Pool(PROCESS_COUNT)
# clusters = dict(pool.map(map_generate_tuple, tasklist))
clusters = dict(map(map_generate_tuple, tasklist))
# pool.close()
# pool.join()
return clusters
def clustering_by_label(instances, label, meta_dataset, logger):
"""Obtain all possible clusters with given label.
Args:
instances (Vertices): all instances with given label
label (label): label
meta_dataset (meta_dataset): dict of the whole dataset
logger (logger): logger inherited
Returns:
list: list of all clusters obtained
"""
clusters = []
impurities = {
item[0]: item[1]
for item in meta_dataset.items() if item[0] != label}
impurities = list(itertools.chain(*impurities.values()))
while instances:
# List is not empty
cluster = gift_wrapping(instances, impurities, logger)
found = cluster['dimension'] < len(cluster['vertices'])
_dataset = []
vertices = []
points = []
for vertex in instances:
if vertex in cluster['vertices']:
vertices.append(vertex)
else:
if found and check_inside_hull(cluster['faces'], vertex):
points.append(vertex)
else:
_dataset.append(vertex)
if found:
volume = round(calculate_volume(cluster['faces']), 15)
elif len(cluster['faces'][0]) > 1:
volume = round(numpy.exp(squared_area(cluster['faces'][0])), 15)
else:
volume = 0.0
instances = _dataset
clusters.append({'vertices': vertices,
'points': points,
'size': len(vertices) + len(points),
'volume': volume})
logger.info(
'Clustering: %d clusters found, '
'%d/%d instance processed for label %r',
len(clusters), len(meta_dataset[label]) - len(instances),
len(impurities) + len(meta_dataset[label]), label)
return clusters
def calculate_volume(hull):
"""Calculate the volume of a convex hull.
Args:
hull (list): All faces in the hull.
Returns:
float: Volume calculated.
"""
origin = hull[0][0]
volume = 0.0
for face in hull:
logvolume = signed_volume(form_face(face, origin))[1]
volume += numpy.exp(logvolume)
# n-dimensional simplex = det / n!
volume /= scipy.special.factorial(len(origin))
return volume
def centroid(clusters):
"""Calculate the centroid of the vertices on the convex hulls.
Inner instances are excluded.
Args:
clusters (list): list of clusters
Returns:
list: [vertex, ...]
"""
centroids = list(map(
lambda cluster: tuple(map(
lambda x, cluster=cluster: x / len(cluster['vertices']),
sum(map(
numpy.array,
cluster['vertices'])))),
clusters))
return centroids
def main(argv):
"""Start main function here."""
dataset_filename = argv[0]
clusters_filename = dataset_filename + ".clusters.json"
output_filename = dataset_filename + ".output.json"
log_file = dataset_filename + ".log"
logger, handler = initialize_logger(log_file)
logger.info('Start: Version 1.0.1')
logger.debug('Logger initialized')
logger.debug('sys.argv: %r', sys.argv)
logger.debug('Loading dataset')
dataset = load_dataset(dataset_filename)
logger.info('Dataset loaded')
logger.info('Trying to load clusters from %s', clusters_filename)
clusters = None
try:
clusters = json.load(open(clusters_filename, 'r'))
except FileNotFoundError:
logger.warning('Clusters data file not found')
except json.decoder.JSONDecodeError:
logger.warning('File broken. Not Json Decodable')
if not clusters:
logger.debug('Clustering data points')
clusters = clustering(dataset, logger)
logger.debug(
'Dumping clusters data into json file: %s', clusters_filename)
json.dump(clusters, open(clusters_filename, 'w'))
logger.info('Data points clustered')
logger.debug('Calculating meta-feature indicators')
features = meta_features.meta_features(clusters)
logger.debug(
'Dumping meta-feature indicators into json file: %s',
clusters_filename)
json.dump(features, open(output_filename, 'w'))
logger.info('Meta-feature indicators calculated')
logger.info('Completed')
logger.removeHandler(handler)
if __name__ == '__main__':
main(sys.argv[1:])