forked from bevyengine/bevy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbreakout.rs
438 lines (379 loc) · 14.4 KB
/
breakout.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//! A simplified implementation of the classic game "Breakout".
//!
//! Demonstrates Bevy's stepping capabilities if compiled with the `bevy_debug_stepping` feature.
use bevy::{
math::bounding::{Aabb2d, BoundingCircle, BoundingVolume, IntersectsVolume},
prelude::*,
};
mod stepping;
// These constants are defined in `Transform` units.
// Using the default 2D camera they correspond 1:1 with screen pixels.
const PADDLE_SIZE: Vec2 = Vec2::new(120.0, 20.0);
const GAP_BETWEEN_PADDLE_AND_FLOOR: f32 = 60.0;
const PADDLE_SPEED: f32 = 500.0;
// How close can the paddle get to the wall
const PADDLE_PADDING: f32 = 10.0;
// We set the z-value of the ball to 1 so it renders on top in the case of overlapping sprites.
const BALL_STARTING_POSITION: Vec3 = Vec3::new(0.0, -50.0, 1.0);
const BALL_DIAMETER: f32 = 30.;
const BALL_SPEED: f32 = 400.0;
const INITIAL_BALL_DIRECTION: Vec2 = Vec2::new(0.5, -0.5);
const WALL_THICKNESS: f32 = 10.0;
// x coordinates
const LEFT_WALL: f32 = -450.;
const RIGHT_WALL: f32 = 450.;
// y coordinates
const BOTTOM_WALL: f32 = -300.;
const TOP_WALL: f32 = 300.;
const BRICK_SIZE: Vec2 = Vec2::new(100., 30.);
// These values are exact
const GAP_BETWEEN_PADDLE_AND_BRICKS: f32 = 270.0;
const GAP_BETWEEN_BRICKS: f32 = 5.0;
// These values are lower bounds, as the number of bricks is computed
const GAP_BETWEEN_BRICKS_AND_CEILING: f32 = 20.0;
const GAP_BETWEEN_BRICKS_AND_SIDES: f32 = 20.0;
const SCOREBOARD_FONT_SIZE: f32 = 33.0;
const SCOREBOARD_TEXT_PADDING: Val = Val::Px(5.0);
const BACKGROUND_COLOR: Color = Color::srgb(0.9, 0.9, 0.9);
const PADDLE_COLOR: Color = Color::srgb(0.3, 0.3, 0.7);
const BALL_COLOR: Color = Color::srgb(1.0, 0.5, 0.5);
const BRICK_COLOR: Color = Color::srgb(0.5, 0.5, 1.0);
const WALL_COLOR: Color = Color::srgb(0.8, 0.8, 0.8);
const TEXT_COLOR: Color = Color::srgb(0.5, 0.5, 1.0);
const SCORE_COLOR: Color = Color::srgb(1.0, 0.5, 0.5);
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugins(
stepping::SteppingPlugin::default()
.add_schedule(Update)
.add_schedule(FixedUpdate)
.at(Val::Percent(35.0), Val::Percent(50.0)),
)
.insert_resource(Score(0))
.insert_resource(ClearColor(BACKGROUND_COLOR))
.add_event::<CollisionEvent>()
.add_systems(Startup, setup)
// Add our gameplay simulation systems to the fixed timestep schedule
// which runs at 64 Hz by default
.add_systems(
FixedUpdate,
(
apply_velocity,
move_paddle,
check_for_collisions,
play_collision_sound,
)
// `chain`ing systems together runs them in order
.chain(),
)
.add_systems(Update, update_scoreboard)
.run();
}
#[derive(Component)]
struct Paddle;
#[derive(Component)]
struct Ball;
#[derive(Component, Deref, DerefMut)]
struct Velocity(Vec2);
#[derive(Event, Default)]
struct CollisionEvent;
#[derive(Component)]
struct Brick;
#[derive(Resource, Deref)]
struct CollisionSound(Handle<AudioSource>);
// Default must be implemented to define this as a required component for the Wall component below
#[derive(Component, Default)]
struct Collider;
// This is a collection of the components that define a "Wall" in our game
#[derive(Component)]
#[require(Sprite, Transform, Collider)]
struct Wall;
/// Which side of the arena is this wall located on?
enum WallLocation {
Left,
Right,
Bottom,
Top,
}
impl WallLocation {
/// Location of the *center* of the wall, used in `transform.translation()`
fn position(&self) -> Vec2 {
match self {
WallLocation::Left => Vec2::new(LEFT_WALL, 0.),
WallLocation::Right => Vec2::new(RIGHT_WALL, 0.),
WallLocation::Bottom => Vec2::new(0., BOTTOM_WALL),
WallLocation::Top => Vec2::new(0., TOP_WALL),
}
}
/// (x, y) dimensions of the wall, used in `transform.scale()`
fn size(&self) -> Vec2 {
let arena_height = TOP_WALL - BOTTOM_WALL;
let arena_width = RIGHT_WALL - LEFT_WALL;
// Make sure we haven't messed up our constants
assert!(arena_height > 0.0);
assert!(arena_width > 0.0);
match self {
WallLocation::Left | WallLocation::Right => {
Vec2::new(WALL_THICKNESS, arena_height + WALL_THICKNESS)
}
WallLocation::Bottom | WallLocation::Top => {
Vec2::new(arena_width + WALL_THICKNESS, WALL_THICKNESS)
}
}
}
}
impl Wall {
// This "builder method" allows us to reuse logic across our wall entities,
// making our code easier to read and less prone to bugs when we change the logic
// Notice the use of Sprite and Transform alongside Wall, overwriting the default values defined for the required components
fn new(location: WallLocation) -> (Wall, Sprite, Transform) {
(
Wall,
Sprite::from_color(WALL_COLOR, Vec2::ONE),
Transform {
// We need to convert our Vec2 into a Vec3, by giving it a z-coordinate
// This is used to determine the order of our sprites
translation: location.position().extend(0.0),
// The z-scale of 2D objects must always be 1.0,
// or their ordering will be affected in surprising ways.
// See https://github.com/bevyengine/bevy/issues/4149
scale: location.size().extend(1.0),
..default()
},
)
}
}
// This resource tracks the game's score
#[derive(Resource, Deref, DerefMut)]
struct Score(usize);
#[derive(Component)]
struct ScoreboardUi;
// Add the game's entities to our world
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<ColorMaterial>>,
asset_server: Res<AssetServer>,
) {
// Camera
commands.spawn(Camera2d);
// Sound
let ball_collision_sound = asset_server.load("sounds/breakout_collision.ogg");
commands.insert_resource(CollisionSound(ball_collision_sound));
// Paddle
let paddle_y = BOTTOM_WALL + GAP_BETWEEN_PADDLE_AND_FLOOR;
commands.spawn((
Sprite::from_color(PADDLE_COLOR, Vec2::ONE),
Transform {
translation: Vec3::new(0.0, paddle_y, 0.0),
scale: PADDLE_SIZE.extend(1.0),
..default()
},
Paddle,
Collider,
));
// Ball
commands.spawn((
Mesh2d(meshes.add(Circle::default())),
MeshMaterial2d(materials.add(BALL_COLOR)),
Transform::from_translation(BALL_STARTING_POSITION)
.with_scale(Vec2::splat(BALL_DIAMETER).extend(1.)),
Ball,
Velocity(INITIAL_BALL_DIRECTION.normalize() * BALL_SPEED),
));
// Scoreboard
commands
.spawn((
Text::new("Score: "),
TextFont {
font_size: SCOREBOARD_FONT_SIZE,
..default()
},
TextColor(TEXT_COLOR),
ScoreboardUi,
Node {
position_type: PositionType::Absolute,
top: SCOREBOARD_TEXT_PADDING,
left: SCOREBOARD_TEXT_PADDING,
..default()
},
))
.with_child((
TextSpan::default(),
TextFont {
font_size: SCOREBOARD_FONT_SIZE,
..default()
},
TextColor(SCORE_COLOR),
));
// Walls
commands.spawn(Wall::new(WallLocation::Left));
commands.spawn(Wall::new(WallLocation::Right));
commands.spawn(Wall::new(WallLocation::Bottom));
commands.spawn(Wall::new(WallLocation::Top));
// Bricks
let total_width_of_bricks = (RIGHT_WALL - LEFT_WALL) - 2. * GAP_BETWEEN_BRICKS_AND_SIDES;
let bottom_edge_of_bricks = paddle_y + GAP_BETWEEN_PADDLE_AND_BRICKS;
let total_height_of_bricks = TOP_WALL - bottom_edge_of_bricks - GAP_BETWEEN_BRICKS_AND_CEILING;
assert!(total_width_of_bricks > 0.0);
assert!(total_height_of_bricks > 0.0);
// Given the space available, compute how many rows and columns of bricks we can fit
let n_columns = (total_width_of_bricks / (BRICK_SIZE.x + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_rows = (total_height_of_bricks / (BRICK_SIZE.y + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_vertical_gaps = n_columns - 1;
// Because we need to round the number of columns,
// the space on the top and sides of the bricks only captures a lower bound, not an exact value
let center_of_bricks = (LEFT_WALL + RIGHT_WALL) / 2.0;
let left_edge_of_bricks = center_of_bricks
// Space taken up by the bricks
- (n_columns as f32 / 2.0 * BRICK_SIZE.x)
// Space taken up by the gaps
- n_vertical_gaps as f32 / 2.0 * GAP_BETWEEN_BRICKS;
// In Bevy, the `translation` of an entity describes the center point,
// not its bottom-left corner
let offset_x = left_edge_of_bricks + BRICK_SIZE.x / 2.;
let offset_y = bottom_edge_of_bricks + BRICK_SIZE.y / 2.;
for row in 0..n_rows {
for column in 0..n_columns {
let brick_position = Vec2::new(
offset_x + column as f32 * (BRICK_SIZE.x + GAP_BETWEEN_BRICKS),
offset_y + row as f32 * (BRICK_SIZE.y + GAP_BETWEEN_BRICKS),
);
// brick
commands.spawn((
Sprite {
color: BRICK_COLOR,
..default()
},
Transform {
translation: brick_position.extend(0.0),
scale: Vec3::new(BRICK_SIZE.x, BRICK_SIZE.y, 1.0),
..default()
},
Brick,
Collider,
));
}
}
}
fn move_paddle(
keyboard_input: Res<ButtonInput<KeyCode>>,
mut paddle_transform: Single<&mut Transform, With<Paddle>>,
time: Res<Time>,
) {
let mut direction = 0.0;
if keyboard_input.pressed(KeyCode::ArrowLeft) {
direction -= 1.0;
}
if keyboard_input.pressed(KeyCode::ArrowRight) {
direction += 1.0;
}
// Calculate the new horizontal paddle position based on player input
let new_paddle_position =
paddle_transform.translation.x + direction * PADDLE_SPEED * time.delta_secs();
// Update the paddle position,
// making sure it doesn't cause the paddle to leave the arena
let left_bound = LEFT_WALL + WALL_THICKNESS / 2.0 + PADDLE_SIZE.x / 2.0 + PADDLE_PADDING;
let right_bound = RIGHT_WALL - WALL_THICKNESS / 2.0 - PADDLE_SIZE.x / 2.0 - PADDLE_PADDING;
paddle_transform.translation.x = new_paddle_position.clamp(left_bound, right_bound);
}
fn apply_velocity(mut query: Query<(&mut Transform, &Velocity)>, time: Res<Time>) {
for (mut transform, velocity) in &mut query {
transform.translation.x += velocity.x * time.delta_secs();
transform.translation.y += velocity.y * time.delta_secs();
}
}
fn update_scoreboard(
score: Res<Score>,
score_root: Single<Entity, (With<ScoreboardUi>, With<Text>)>,
mut writer: TextUiWriter,
) {
*writer.text(*score_root, 1) = score.to_string();
}
fn check_for_collisions(
mut commands: Commands,
mut score: ResMut<Score>,
ball_query: Single<(&mut Velocity, &Transform), With<Ball>>,
collider_query: Query<(Entity, &Transform, Option<&Brick>), With<Collider>>,
mut collision_events: EventWriter<CollisionEvent>,
) {
let (mut ball_velocity, ball_transform) = ball_query.into_inner();
for (collider_entity, collider_transform, maybe_brick) in &collider_query {
let collision = ball_collision(
BoundingCircle::new(ball_transform.translation.truncate(), BALL_DIAMETER / 2.),
Aabb2d::new(
collider_transform.translation.truncate(),
collider_transform.scale.truncate() / 2.,
),
);
if let Some(collision) = collision {
// Sends a collision event so that other systems can react to the collision
collision_events.send_default();
// Bricks should be despawned and increment the scoreboard on collision
if maybe_brick.is_some() {
commands.entity(collider_entity).despawn();
**score += 1;
}
// Reflect the ball's velocity when it collides
let mut reflect_x = false;
let mut reflect_y = false;
// Reflect only if the velocity is in the opposite direction of the collision
// This prevents the ball from getting stuck inside the bar
match collision {
Collision::Left => reflect_x = ball_velocity.x > 0.0,
Collision::Right => reflect_x = ball_velocity.x < 0.0,
Collision::Top => reflect_y = ball_velocity.y < 0.0,
Collision::Bottom => reflect_y = ball_velocity.y > 0.0,
}
// Reflect velocity on the x-axis if we hit something on the x-axis
if reflect_x {
ball_velocity.x = -ball_velocity.x;
}
// Reflect velocity on the y-axis if we hit something on the y-axis
if reflect_y {
ball_velocity.y = -ball_velocity.y;
}
}
}
}
fn play_collision_sound(
mut commands: Commands,
mut collision_events: EventReader<CollisionEvent>,
sound: Res<CollisionSound>,
) {
// Play a sound once per frame if a collision occurred.
if !collision_events.is_empty() {
// This prevents events staying active on the next frame.
collision_events.clear();
commands.spawn((AudioPlayer(sound.clone()), PlaybackSettings::DESPAWN));
}
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum Collision {
Left,
Right,
Top,
Bottom,
}
// Returns `Some` if `ball` collides with `bounding_box`.
// The returned `Collision` is the side of `bounding_box` that `ball` hit.
fn ball_collision(ball: BoundingCircle, bounding_box: Aabb2d) -> Option<Collision> {
if !ball.intersects(&bounding_box) {
return None;
}
let closest = bounding_box.closest_point(ball.center());
let offset = ball.center() - closest;
let side = if offset.x.abs() > offset.y.abs() {
if offset.x < 0. {
Collision::Left
} else {
Collision::Right
}
} else if offset.y > 0. {
Collision::Top
} else {
Collision::Bottom
};
Some(side)
}