-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathsimd_utils_sse_int32.h
executable file
·395 lines (339 loc) · 13.2 KB
/
simd_utils_sse_int32.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/*
* Project : SIMD_Utils
* Version : 0.2.3
* Author : JishinMaster
* Licence : BSD-2
*/
#pragma once
#include <stdint.h>
#ifndef ARM
#include <immintrin.h>
#else
#include "sse2neon_wrapper.h"
#endif
static inline void add128s(int32_t *src1, int32_t *src2, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) (dst + i), _mm_add_epi32(_mm_load_si128((__m128i *) (src1 + i)),
_mm_load_si128((__m128i *) (src2 + i))));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_storeu_si128((__m128i *) (dst + i), _mm_add_epi32(_mm_loadu_si128((__m128i *) (src1 + i)),
_mm_loadu_si128((__m128i *) (src2 + i))));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src1[i] + src2[i];
}
}
// result is wrong, the instruction casts to 64bit
#if 0
static inline void mul128s(int32_t *src1, int32_t *src2, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) dst + i, _mm_mul_epi32(_mm_load_si128((__m128i *) (src1 + i)), _mm_load_si128((__m128i *) (src2 + i))));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_storeu_si128((__m128i *) dst + i, _mm_mul_epi32(_mm_loadu_si128((__m128i *) (src1 + i)), _mm_loadu_si128((__m128i *) (src2 + i))));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src1[i] * src2[i];
}
}
#endif
static inline void sub128s(int32_t *src1, int32_t *src2, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) (dst + i), _mm_sub_epi32(_mm_load_si128((__m128i *) (src1 + i)),
_mm_load_si128((__m128i *) (src2 + i))));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_storeu_si128((__m128i *) (dst + i), _mm_sub_epi32(_mm_loadu_si128((__m128i *) (src1 + i)),
_mm_loadu_si128((__m128i *) (src2 + i))));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src1[i] - src2[i];
}
}
static inline void addc128s(int32_t *src, int32_t value, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
const v4si tmp = _mm_set1_epi32(value);
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) (dst + i), _mm_add_epi32(tmp, _mm_load_si128((__m128i *) (src + i))));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_storeu_si128((__m128i *) (dst + i), _mm_add_epi32(tmp, _mm_loadu_si128((__m128i *) (src + i))));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i] + value;
}
}
static inline void vectorSlope128s(int *dst, int len, int offset, int slope)
{
v4si coef = _mm_set_epi32(3 * slope, 2 * slope, slope, 0);
v4si slope8_vec = _mm_set1_epi32(8 * slope);
v4si curVal = _mm_add_epi32(_mm_set1_epi32(offset), coef);
v4si curVal2 = _mm_add_epi32(_mm_set1_epi32(offset), coef);
curVal2 = _mm_add_epi32(curVal2, _mm_set1_epi32(4 * slope));
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (isAligned((uintptr_t) (dst), SSE_LEN_BYTES)) {
_mm_store_si128((__m128i *) dst, curVal);
_mm_store_si128((__m128i *) (dst + SSE_LEN_INT32), curVal2);
} else {
_mm_storeu_si128((__m128i *) dst, curVal);
_mm_storeu_si128((__m128i *) (dst + SSE_LEN_INT32), curVal2);
}
if (isAligned((uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 2 * SSE_LEN_INT32; i < stop_len; i += 2 * SSE_LEN_INT32) {
curVal = _mm_add_epi32(curVal, slope8_vec);
_mm_store_si128((__m128i *) (dst + i), curVal);
curVal2 = _mm_add_epi32(curVal2, slope8_vec);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), curVal2);
}
} else {
for (int i = 2 * SSE_LEN_INT32; i < stop_len; i += 2 * SSE_LEN_INT32) {
curVal = _mm_add_epi32(curVal, slope8_vec);
_mm_storeu_si128((__m128i *) (dst + i), curVal);
curVal2 = _mm_add_epi32(curVal2, slope8_vec);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), curVal2);
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = offset + slope * i;
}
}
static inline void sum128s(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
__attribute__((aligned(SSE_LEN_BYTES))) int32_t accumulate[SSE_LEN_INT32] = {0, 0, 0, 0};
int32_t tmp_acc = 0;
v4si vec_acc1 = _mm_setzero_si128(); // initialize the vector accumulator
v4si vec_acc2 = _mm_setzero_si128(); // initialize the vector accumulator
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si vec_tmp1 = _mm_load_si128((__m128i *) (src + i));
vec_acc1 = _mm_add_epi32(vec_acc1, vec_tmp1);
v4si vec_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
vec_acc2 = _mm_add_epi32(vec_acc2, vec_tmp2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si vec_tmp1 = _mm_loadu_si128((__m128i *) (src + i));
vec_acc1 = _mm_add_epi32(vec_acc1, vec_tmp1);
v4si vec_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
vec_acc2 = _mm_add_epi32(vec_acc2, vec_tmp2);
}
}
vec_acc1 = _mm_add_epi32(vec_acc1, vec_acc2);
_mm_store_si128((__m128i *) accumulate, vec_acc1);
for (int i = stop_len; i < len; i++) {
tmp_acc += src[i];
}
tmp_acc = tmp_acc + accumulate[0] + accumulate[1] + accumulate[2] + accumulate[3];
*dst = tmp_acc;
}
// Experimental
static inline void copy128s(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) (dst + i), _mm_load_si128((__m128i *) (src + i)));
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
static inline void copy128s_2(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
__m128i tmp1 = _mm_load_si128((__m128i *) (src + i));
__m128i tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
_mm_store_si128((__m128i *) (dst + i), tmp1);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), tmp2);
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
static inline void fast_copy128s(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_stream_si128((__m128i *) (dst + i), _mm_stream_load_si128((__m128i *) (src + i)));
}
_mm_mfence();
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
static inline void fast_copy128s_2(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
__m128i tmp1 = _mm_stream_load_si128((__m128i *) (src + i));
__m128i tmp2 = _mm_stream_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
_mm_stream_si128((__m128i *) (dst + i), tmp1);
_mm_stream_si128((__m128i *) (dst + i + SSE_LEN_INT32), tmp2);
}
_mm_mfence();
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
static inline void fast_copy128s_4(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (4 * SSE_LEN_INT32);
stop_len *= (4 * SSE_LEN_INT32);
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += 4 * SSE_LEN_INT32) {
__m128i tmp1 = _mm_stream_load_si128((__m128i *) (src + i));
__m128i tmp2 = _mm_stream_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
__m128i tmp3 = _mm_stream_load_si128((__m128i *) (src + i + 2 * SSE_LEN_INT32));
__m128i tmp4 = _mm_stream_load_si128((__m128i *) (src + i + 3 * SSE_LEN_INT32));
_mm_stream_si128((__m128i *) (dst + i), tmp1);
_mm_stream_si128((__m128i *) (dst + i + SSE_LEN_INT32), tmp2);
_mm_stream_si128((__m128i *) (dst + i + 2 * SSE_LEN_INT32), tmp3);
_mm_stream_si128((__m128i *) (dst + i + 3 * SSE_LEN_INT32), tmp4);
}
_mm_mfence();
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
// Adapted from NEON2SSE (does not exists for X86)
static inline __m128i _mm_absdiff_epi16(__m128i a, __m128i b)
{
#ifndef ARM
__m128i cmp, difab, difba;
cmp = _mm_cmpgt_epi16(a, b);
difab = _mm_sub_epi16(a, b);
difba = _mm_sub_epi16(b, a);
difab = _mm_and_si128(cmp, difab);
difba = _mm_andnot_si128(cmp, difba);
return _mm_or_si128(difab, difba);
#else
return vreinterpretq_m128i_s16(vabdq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
#endif
}
// Adapted from NEON2SSE (does not exists for X86)
static inline __m128i _mm_absdiff_epi32(__m128i a, __m128i b)
{
#ifndef ARM
__m128i cmp, difab, difba;
cmp = _mm_cmpgt_epi32(a, b);
difab = _mm_sub_epi32(a, b);
difba = _mm_sub_epi32(b, a);
difab = _mm_and_si128(cmp, difab);
difba = _mm_andnot_si128(cmp, difba);
return _mm_or_si128(difab, difba);
#else
return vreinterpretq_m128i_s32(vabdq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
#endif
}
static inline __m128i _mm_absdiff_epi8(__m128i a, __m128i b)
{
#ifndef ARM
__m128i cmp, difab, difba;
cmp = _mm_cmpgt_epi8(a, b);
difab = _mm_sub_epi8(a, b);
difba = _mm_sub_epi8(b, a);
difab = _mm_and_si128(cmp, difab);
difba = _mm_andnot_si128(cmp, difba);
return _mm_or_si128(difab, difba);
#else
return vreinterpretq_m128i_s8(vabdq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
#endif
}
static inline void absdiff16s_128s(int16_t *src1, int16_t *src2, int16_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT16;
stop_len *= SSE_LEN_INT16;
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT16) {
__m128i a = _mm_load_si128((__m128i *) (src1 + i));
__m128i b = _mm_load_si128((__m128i *) (src2 + i));
_mm_store_si128((__m128i *) (dst + i), _mm_absdiff_epi16(a, b));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT16) {
__m128i a = _mm_loadu_si128((__m128i *) (src1 + i));
__m128i b = _mm_loadu_si128((__m128i *) (src2 + i));
_mm_storeu_si128((__m128i *) (dst + i), _mm_absdiff_epi16(a, b));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = abs(src1[i] - src2[i]);
}
}
/*
static inline void print8i(__m128i v)
{
int16_t *p = (int16_t *) &v;
#ifndef __SSE2__
_mm_empty();
#endif
printf("[%d, %d, %d, %d,%d, %d, %d, %d]", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
}*/
static inline void powerspect16s_128s_interleaved(complex16s_t *src, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
int j = 0;
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
__m128i reim = _mm_load_si128((__m128i *) ((const int16_t *) src + j));
// print8i(reim); printf("\n");
_mm_store_si128((__m128i *) (dst + i), _mm_madd_epi16(reim, reim));
j += SSE_LEN_INT16;
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
__m128i reim = _mm_loadu_si128((__m128i *) ((const int16_t *) src + j));
_mm_storeu_si128((__m128i *) (dst + i), _mm_madd_epi16(reim, reim));
j += SSE_LEN_INT16;
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = (int32_t) src[i].re * (int32_t) src[i].re + (int32_t) src[i].im * (int32_t) src[i].im;
}
}