-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
272 lines (224 loc) · 8.34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import random
from os import listdir
from os.path import join
import numpy as np
import torch
import shutil
import torchvision.transforms as transforms
from torch.autograd import Variable
from PIL import Image
from imageio import imread, imsave
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def _data_transforms_cifar10(args):
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform
# load training images
def load_dataset(image_path, BATCH_SIZE, num_imgs=None):
if num_imgs is None:
num_imgs = len(image_path)
original_imgs_path = image_path[:num_imgs]
# random
# random.shuffle(original_imgs_path)
mod = num_imgs % BATCH_SIZE
# print('BATCH SIZE %d.' % BATCH_SIZE)
# print('Train images number %d.' % num_imgs)
# print('Train images samples %s.' % str(num_imgs / BATCH_SIZE))
if mod > 0:
print('Train set has been trimmed %d samples...\n' % mod)
original_imgs_path = original_imgs_path[:-mod] # 多出来的不用处理?
batches = int(len(original_imgs_path) // BATCH_SIZE)
return original_imgs_path, batches
def get_image(path, height=256, width=256, mode='L'):
if mode == 'L':
image = imread(path, pilmode=mode)
# image = Image.open(path, )
elif mode == 'RGB':
image = Image.open(path).convert('RGB')
if height is not None and width is not None:
#image = imresize(image, [height, width], interp='nearest')
image = np.array(Image.fromarray(image).resize((height, width)))
return image
'''
def get_train_images_auto(paths, height=256, width=256, mode='RGB'):
if isinstance(paths, str):
paths = [paths] #加个[]?
images = []
for path in paths:
image = get_image(path, height, width, mode=mode)
if mode == 'L': #什么模式
image = np.reshape(image, [1, image.shape[0], image.shape[1]])#灰度图片
else:
image = np.reshape(image, [image.shape[2], image.shape[0], image.shape[1]])#RGB
images.append(image)
images = np.stack(images, axis=0) #增加一维
images = torch.from_numpy(images).float()
return images
'''
pil_to_tensor = transforms.ToTensor()
def get_train_images_auto(paths):
if isinstance(paths, str):
paths = [paths] # 加个[]?
images = []
for path in paths:
image = Image.open(path)
mode = image.mode
if mode == 'RGB': # 什么模式
image = image.convert('L')
image = np.reshape(image, [1, image.size[1], image.size[0]]) # 灰度图片
# image = pil_to_tensor(image)
# print(image.shape)
images.append(image)
images = np.stack(images, axis=0) # 增加一维
images = torch.from_numpy(images).float()
# images = torch.stack(images)
# print(images.size())
return images
#0-255
# def get_train_images_auto(paths, height=256, width=256, mode='RGB'):
# if isinstance(paths, str):
# paths = [paths] #加个[]?
# images = []
# for path in paths:
# image = get_image(path, height, width, mode=mode)
# if mode == 'L': #什么模式
# image = np.reshape(image, [1, image.shape[0], image.shape[1]])#灰度图片
# else:
# image = np.reshape(image, [image.shape[2], image.shape[0], image.shape[1]])#RGB
# images.append(image)
#
# images = np.stack(images, axis=0) #增加一维
# images = torch.from_numpy(images).float()
# return images
def get_test_images(paths, height=None, width=None, mode='L'):
ImageToTensor = transforms.Compose([transforms.ToTensor()])
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:#不就一张图片吗
image = get_image(path, height, width, mode=mode)
if mode == 'L':
image = np.reshape(image, [1, image.shape[0], image.shape[1]])
else:
# test = ImageToTensor(image).numpy()
# shape = ImageToTensor(image).size()
image = ImageToTensor(image).float().numpy()*255
images.append(image)
images = np.stack(images, axis=0)
images = torch.from_numpy(images).float()
return images
'''
loader = transforms.Compose([
transforms.ToTensor()])
def get_train_images_auto(paths):
if isinstance(paths, str):
paths = [paths] # 加个[]?
images = []
for path in paths:
image = Image.open(path)
# print(image.size)
mode = image.mode
if mode == 'RGB': # 什么模式
image = image.convert('L')
img = loader(image)
images.append(img)
images = torch.stack(images) # 增加一维
# print(images)
return images
'''
def list_images(directory): # 得到所有图片路径
images = []
names = []
dir = listdir(directory)
dir.sort()
for file in dir:
name = file.lower()
if name.endswith('.png'):
images.append(join(directory, file))
elif name.endswith('.jpg'):
images.append(join(directory, file))
elif name.endswith('.jpeg'):
images.append(join(directory, file))
name1 = name.split('.')
names.append(name1[0]) # names没有用到
return images
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path):
model.load_state_dict(torch.load(model_path))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob))
print('x.size:', x.shape)
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.mkdir(path)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)