-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathjWOA.m
77 lines (70 loc) · 1.59 KB
/
jWOA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
function [sFeat,Sf,Nf,curve] = jWOA(feat,label,N,max_Iter,HO)
% Parameters
lb = 0;
ub = 1;
b = 1;
fun = @jFitnessFunction;
dim = size(feat,2);
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > 0.5),HO);
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
curve = inf;
t = 1;
%---Iteration start---------------------------------------------------
while t <= max_Iter
a = 2 - t * (2 / max_Iter);
for i = 1:N
A = 2 * a * rand() - a;
C = 2 * rand();
p = rand();
l = -1 + 2 * rand();
if p < 0.5
if abs(A) < 1
for d = 1:dim
Dx = abs(C * Xgb(d) - X(i,d));
X(i,d) = Xgb(d) - A * Dx;
end
elseif abs(A) >= 1
for d = 1:dim
k = randi([1,N]);
Dx = abs(C * X(k,d) - X(i,d));
X(i,d) = X(k,d) - A * Dx;
end
end
elseif p >= 0.5
for d = 1:dim
dist = abs(Xgb(d) - X(i,d));
X(i,d) = dist * exp(b * l) * cos(2 * pi * l) + Xgb(d);
end
end
XB = X(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
X(i,:) = XB;
end
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > 0.5),HO);
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
curve(t) = fitG;
fprintf('\nIteration %d Best (WOA)= %f',t,curve(t))
t = t + 1;
end
Pos = 1:dim;
Sf = Pos((Xgb > 0.5) == 1);
Nf = length(Sf);
sFeat = feat(:,Sf);
end