-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathpsg.py
93 lines (92 loc) · 2.58 KB
/
psg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# dataset settings
dataset_type = 'PanopticSceneGraphDataset'
ann_file = './data/psg/psg.json'
coco_root = 'data/coco'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadPanopticSceneGraphAnnotations',
with_bbox=True,
with_rel=True,
with_mask=True,
with_seg=True,
),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='SegRescale', scale_factor=1 / 4),
dict(type='SceneGraphFormatBundle'),
dict(
type='Collect',
keys=[
'img',
'gt_bboxes',
'gt_labels',
'gt_rels',
'gt_relmaps',
'gt_masks',
'gt_semantic_seg',
],
),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
# Since the forward process may need gt info, annos must be loaded.
dict(type='LoadPanopticSceneGraphAnnotations',
with_bbox=True,
with_rel=True),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
# NOTE: Do not change the img to DC.
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_bboxes', 'gt_labels']),
dict(
type='ToDataContainer',
fields=(dict(key='gt_bboxes'), dict(key='gt_labels')),
),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
],
),
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=ann_file,
img_prefix=coco_root,
seg_prefix=coco_root,
pipeline=train_pipeline,
split='train',
all_bboxes=True,
),
val=dict(
type=dataset_type,
ann_file=ann_file,
img_prefix=coco_root,
seg_prefix=coco_root,
pipeline=test_pipeline,
split='test',
all_bboxes=True,
),
test=dict(
type=dataset_type,
ann_file=ann_file,
img_prefix=coco_root,
seg_prefix=coco_root,
pipeline=test_pipeline,
split='test',
all_bboxes=True,
),
)