-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
484 lines (400 loc) · 20.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import os
import logging
import argparse
import time
import tasks
import random
import json
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, HfArgumentParser, \
TrainingArguments, DataCollatorWithPadding, DataCollatorForTokenClassification
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
import numpy as np
from dataclasses import dataclass, is_dataclass, asdict
from tqdm import tqdm
from tasks import get_task
from metrics import calculate_metric
from utils import *
from PEFT import *
os.environ['WANDB_MODE'] = 'disabled'
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
@dataclass
class OurArguments(TrainingArguments):
# dataset and sampling strategy
task_name: str = "SST2" # task name should match the string before Dataset in the Dataset class name. We support the following task_name: SST2, RTE, CB, BoolQ, WSC, WIC, MultiRC, Copa, ReCoRD, SQuAD, DROP
# Number of examples
num_train: int = 0 # ICL mode: number of demonstrations; training mode: number of training samples
num_dev: int = None # (only enabled with training) number of development samples
num_eval: int = None # number of evaluation samples
num_train_sets: int = None # how many sets of training samples/demos to sample; if None and train_set_seed is None, then we will sample one set for each evaluation sample
train_set_seed: int = None # designated seed to sample training samples/demos
result_file: str = None # file name for saving performance; if None, then use the task name, model name, and config
# Model loading
model_name: str = "facebook/opt-125m" # HuggingFace model name
max_length: int = 2048 # max length the model can take
auto_device: bool = True # turn this on for zero2 and off for zero3
# Training
only_train_option: bool = True # whether to only train the option part of the input
train_as_classification: bool = False # take the log likelihood of all options and train as classification
# Generation
sampling: bool = False # whether to use sampling
temperature: float = 1.0 # temperature for generation
num_beams: int = 1 # number of beams for generation
top_k: int = None # top-k for generation
top_p: float = 0.95 # top-p for generation
max_new_tokens: int = 50 # max number of new tokens to generate
eos_token: str = "\n" # end of sentence token
# Evaluation
eval_batch_size: int = 8 # batch size for evaluation
# Saving
save_model: bool = False # whether to save the model
tag: str = "" # saving tag
# Auto saving when interrupted
save_on_interrupt: bool = False # save model when interrupted (useful for long training)
# Prefix tuning
prefix_tuning: bool = False # whether to use prefix tuning
num_prefix: int = 5 # number of prefixes to use
prefix_init_by_real_act: bool = True # initialize prefix by real activations of random words
# LoRA
lora: bool = False # whether to use LoRA
lora_alpha: int = 16 # alpha in LoRA
lora_r: int = 8 # r in LoRA
# Adapter
adapter: bool = False # use adapter
adapter_act_type: str = 'relu' # activation function for adapter
adapter_r: int = 8 # r in adapter
# AdaLora
adalora: bool = False # use AdaLora
# Random Masking
random_masking: bool = False # use random masking
masking_prob: float = 0.0 # masking probability for random masking (also for structured masking)
# Structrued Masking
structured_masking: bool = False # use structured masking
# Bitfit
bitfit: bool = False # use bitfit
def parse_args():
# parser = argparse.ArgumentParser()
parser = HfArgumentParser(OurArguments)
args = parser.parse_args_into_dataclasses()[0]
# Configure other GPUs to suppress all log output
if args.local_rank > 0:
logger.setLevel(level=logging.CRITICAL)
logger.info(args)
return args
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
class Framework:
def __init__(self, args, task):
self.args = args
self.task = task
self.model, self.tokenizer, self.config = self.load_model()
def load_model(self):
"""
Load HuggingFace models
"""
with count_time("Loading model"):
config = AutoConfig.from_pretrained(self.args.model_name)
if self.args.auto_device:
torch_dtype = torch.float16 # for OPT models, use float16; for llama models, use bfloat16
model = AutoModelForCausalLM.from_pretrained(
self.args.model_name,
config=config,
device_map='auto',
torch_dtype=torch_dtype,
)
else:
model = AutoModelForCausalLM.from_pretrained(
self.args.model_name,
config=config,
)
model.eval()
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(self.args.model_name, use_fast=False)
# HF tokenizer bug fix
if "opt" in self.args.model_name:
tokenizer.bos_token_id = 0
if "llama" in self.args.model_name:
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
if self.args.gradient_checkpointing:
model.enable_input_require_grads()
if self.args.prefix_tuning:
PrefixTuning(model, num_prefix=self.args.num_prefix, init_by_real_act=True)
elif self.args.lora:
LoRA(model, r=self.args.lora_r, alpha=self.args.lora_alpha)
elif self.args.adalora:
# load_best_model_at_end in the run script should be turned off
from peft import AdaLoraModel, AdaLoraConfig, TaskType
adalora_config = AdaLoraConfig(peft_type="ADALORA", task_type=TaskType.CAUSAL_LM,
r=self.args.lora_r, lora_alpha=self.args.lora_alpha,
target_modules=["q_proj", "v_proj"])
model = AdaLoraModel(model, adalora_config, "default")
elif self.args.adapter:
Adapter(model, r=self.args.adapter_r)
elif self.args.random_masking:
true_masking_prob = convert_masking_prob(self.args.model_name, self.args.masking_prob)
logger.info(f"true masking prob: {true_masking_prob}")
RandomMasking(model, masking_prob=true_masking_prob)
elif self.args.structured_masking:
true_masking_prob = convert_masking_prob(self.args.model_name, self.args.masking_prob)
logger.info(f"true masking prob: {true_masking_prob}")
StructuredMasking(model, masking_prob=true_masking_prob)
elif self.args.bitfit:
Bitfit(model)
return model, tokenizer, config
def forward(self, input_ids, attention_masks=None, option_len=None, generation=False, batch_size=None,
num_of_candidates_arr=None):
"""
Given input_ids and the length of the option, return the log-likelihood of each token in the option.
For generation tasks, return the generated text.
This function is only for inference
"""
input_ids = torch.tensor(input_ids).to(self.model.device)
attention_masks = torch.tensor(attention_masks).to(self.model.device)
if generation:
args = self.args
# Autoregressive generation
outputs = self.model.generate(
input_ids, attention_mask=attention_masks, do_sample=args.sampling, temperature=args.temperature,
num_beams=args.num_beams, top_p=args.top_p, top_k=args.top_k,
max_new_tokens=min(args.max_new_tokens, args.max_length - input_ids.size(1)),
num_return_sequences=1,
eos_token_id=[self.tokenizer.encode(args.eos_token, add_special_tokens=False)[0],
self.tokenizer.eos_token_id],
)
# For generation, directly return the text output
output_texts = []
for idx in range(len(outputs)):
output_text = self.tokenizer.decode(outputs[idx][input_ids[idx].size(0):],
skip_special_tokens=True).strip()
output_texts.append(output_text)
return output_texts
else:
with torch.inference_mode():
self.model.eval()
logits = self.model(input_ids=input_ids, attention_mask=attention_masks).logits
old_input_ids = input_ids
old_logits = logits
old_option_len = option_len
input_ids = []
logits = []
option_len = []
idx = 0
for i in range(batch_size):
input_ids.append(old_input_ids[idx:idx + num_of_candidates_arr[i]])
logits.append(old_logits[idx:idx + num_of_candidates_arr[i]])
option_len.append(old_option_len[idx:idx + num_of_candidates_arr[i]])
idx += num_of_candidates_arr[i]
selected_log_probs = []
for idx1 in range(batch_size):
tmp = []
for idx2 in range(num_of_candidates_arr[idx1]):
padding_len = 0
label = input_ids[idx1][idx2][1 + padding_len:]
logit = logits[idx1][idx2][padding_len:-1]
log_probs = F.log_softmax(logit, dim=-1)
selected_log_prob = log_probs[torch.arange(len(label)).to(label.device), label]
selected_log_prob = selected_log_prob.cpu().detach()
tmp.append(selected_log_prob[-option_len[idx1][idx2]:])
selected_log_probs.append(tmp)
return selected_log_probs
def one_step_pred(self, eval_samples):
"""
Return the prediction on the eval sample.
"""
batch_size = len(eval_samples)
encoded_candidates, attention_masks, option_lens = encode_prompt_eval(
self.task, self.task.get_template(), eval_samples, self.tokenizer,
max_length=self.args.max_length,
generation=self.task.generation, max_new_tokens=self.args.max_new_tokens
)
predictions = []
if self.task.generation:
output_texts = self.forward(encoded_candidates, attention_masks=attention_masks, generation=True,
batch_size=batch_size)
for idx in range(len(eval_samples)):
predictions.append(Prediction(correct_candidate=eval_samples[idx].correct_candidate,
predicted_candidate=output_texts[idx]))
else:
num_of_candidates_arr = [len(eval_samples[i].candidates) for i in range(batch_size)]
selected_log_probs = self.forward(encoded_candidates, attention_masks=attention_masks,
option_len=option_lens, batch_size=batch_size,
num_of_candidates_arr=num_of_candidates_arr)
scores = [[x.mean().item() for x in outputs] for outputs in selected_log_probs]
for idx in range(len(eval_samples)):
if isinstance(eval_samples[idx].correct_candidate, list):
# For some datasets there are multiple correct answers
correct_candidate_id = [eval_samples[idx].candidates.index(c) for c in
eval_samples[idx].correct_candidate]
else:
correct_candidate_id = eval_samples[idx].candidates.index(eval_samples[idx].correct_candidate)
predictions.append(
Prediction(correct_candidate=correct_candidate_id, predicted_candidate=int(np.argmax(scores[idx]))))
return predictions
def evaluate(self, train_samples, eval_samples, one_train_set_per_eval_sample=False):
"""
Evaluate function. If one_train_set_per_eval_sample is True, then each eval sample has its own training (demonstration) set.
"""
if one_train_set_per_eval_sample:
logger.info(f"There are {len(eval_samples)} validation samples and one train set per eval sample")
else:
logger.info(f"There are {len(train_samples)} training samples and {len(eval_samples)} validation samples")
self.model.eval()
torch.cuda.empty_cache()
# Prediction loop
predictions = []
batched_eval_samples = []
eval_batch_size = self.args.eval_batch_size
for idx in range(len(eval_samples) // eval_batch_size):
batched_eval_samples.append(eval_samples[idx * eval_batch_size:(idx + 1) * eval_batch_size])
if len(eval_samples) % eval_batch_size != 0:
batched_eval_samples.append(eval_samples[-(len(eval_samples) % eval_batch_size):])
assert (one_train_set_per_eval_sample is False and train_samples == [])
for batched_eval_id, batched_eval_sample in enumerate(tqdm(batched_eval_samples)):
with torch.no_grad():
predictions.extend(self.one_step_pred(batched_eval_sample))
# Calculate metrics
metric_name = getattr(self.task, "metric_name", "accuracy")
metrics = {metric_name: calculate_metric(predictions, metric_name)}
return metrics
def train(self, train_samples, eval_samples):
"""
Training function
"""
# Set tokenizer to left padding (so that all the options are right aligned)
self.tokenizer.padding_side = "left"
class HFDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def _convert(samples):
"""
Convert samples to HF-compatible dataset
"""
data = []
for sample in samples:
encoded_candidates, option_lens = encode_prompt_train(
self.task, self.task.get_template(), [], sample, self.tokenizer,
max_length=self.args.max_length, generation=self.task.generation, generation_with_gold=True,
max_new_tokens=self.args.max_new_tokens
)
if self.task.generation:
correct_candidate_id = 0
elif isinstance(sample.correct_candidate, list):
correct_candidate_id = sample.candidates.index(sample.correct_candidate[0])
else:
correct_candidate_id = sample.candidates.index(sample.correct_candidate)
if self.args.train_as_classification:
# For classification, we provide the label as the correct candidate id
data.append([{"input_ids": encoded_candidates[_i], "labels": correct_candidate_id,
"option_len": option_lens[_i], "num_options": len(sample.candidates)} for _i in
range(len(encoded_candidates))])
elif self.args.only_train_option:
# Otherwise, it is just LM-style teacher forcing
data.append({"input_ids": encoded_candidates[correct_candidate_id],
"labels": encoded_candidates[correct_candidate_id],
"option_len": option_lens[correct_candidate_id]})
else:
data.append({"input_ids": encoded_candidates[correct_candidate_id],
"labels": encoded_candidates[correct_candidate_id]})
return data
with count_time("Tokenizing training samples"):
train_dataset = HFDataset(_convert(train_samples))
eval_dataset = HFDataset(_convert(eval_samples))
if self.args.only_train_option:
# If --only_train_option and not with a non-differentiable objective, we wrap the forward function
self.model.original_forward = self.model.forward
self.model.forward = forward_wrap_with_option_len.__get__(self.model, type(self.model))
collator = DataCollatorForTokenClassification
from transformers import Trainer
trainer = Trainer(
model=self.model,
args=self.args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=self.tokenizer,
data_collator=DataCollatorWithPaddingAndNesting(self.tokenizer,
pad_to_multiple_of=8) if self.args.train_as_classification else collator(
self.tokenizer, pad_to_multiple_of=8),
)
if self.args.save_on_interrupt:
trainer.add_callback(SIGUSR1Callback())
# Resume training from a last checkpoint
last_checkpoint = None
from transformers.trainer_utils import get_last_checkpoint
if os.path.isdir(self.args.output_dir) and not self.args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(self.args.output_dir)
if last_checkpoint is not None and self.args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
if self.args.resume_from_checkpoint is not None:
last_checkpoint = self.args.resume_from_checkpoint
trainer.train(resume_from_checkpoint=last_checkpoint)
# Explicitly save the model
if self.args.save_model:
logger.warn("Save model..")
trainer.save_model()
# FSDP compatibility
self.model = trainer.model
# Reset the forward function for evaluation
if self.args.only_train_option:
if type(self.model) == FSDP:
logger.info("This is an FSDP model now. Be careful when assigning back the original forward function")
self.model._fsdp_wrapped_module.forward = self.model._fsdp_wrapped_module.original_forward
else:
self.model.forward = self.model.original_forward
def result_file_tag(args):
"""
Get the result file tag
"""
if not os.path.exists("result/"):
os.makedirs("result/")
save_model_name = args.model_name.split("/")[-1]
customized_tag = f"-{args.tag}" if len(args.tag) > 0 else ""
return f"{args.task_name}-{save_model_name}" + customized_tag
def main():
args = parse_args()
set_seed(args.seed)
task = get_task(args.task_name)
train_sets = task.sample_train_sets(num_train=args.num_train, num_dev=args.num_dev, num_eval=args.num_eval,
num_train_sets=args.num_train_sets, seed=args.train_set_seed)
# Initialize trainer and load model
framework = Framework(args, task)
for train_set_id, train_samples in enumerate(train_sets):
train_set_seed = train_set_id if args.train_set_seed is None else args.train_set_seed
# Sample eval samples
if args.num_eval is not None:
eval_samples = task.sample_subset(data_split="valid", seed=train_set_seed, num=args.num_eval)
else:
eval_samples = task.valid_samples
# Prepare train and dev samples
if args.num_dev is not None:
dev_samples = train_samples[-args.num_dev:]
train_samples = train_samples[:-args.num_dev]
else:
dev_samples = None
logger.info(f"Train set {train_set_id} has {len(train_samples)} training samples, "
f"{len(dev_samples)} dev samples, and {len(eval_samples)} eval samples")
# Training
framework.train(train_samples, dev_samples if dev_samples is not None else eval_samples)
# Evaluation
metrics = framework.evaluate([], eval_samples)
logger.info("===== Train set %d =====" % train_set_seed)
logger.info(metrics)
if args.local_rank <= 0:
write_metrics_to_file(metrics, "result/" + result_file_tag(
args) + f"-trainset{train_set_id}.json" if args.result_file is None else args.result_file)
if __name__ == "__main__":
main()