-
Notifications
You must be signed in to change notification settings - Fork 450
/
Copy pathopencv_028.py
43 lines (35 loc) · 1.24 KB
/
opencv_028.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2 as cv
import numpy as np
def get_block_sum(ii, x1, y1, x2, y2, index):
tl = ii[y1, x1][index]
tr = ii[y2, x1][index]
bl = ii[y1, x2][index]
br = ii[y2, x2][index]
s = (br - bl - tr + tl)
return s
def blur_demo(image, ii):
h, w, dims = image.shape
result = np.zeros(image.shape, image.dtype)
ksize = 15
radius = ksize // 2
for row in range(0, h + radius, 1):
y2 = h if (row + 1)> h else (row + 1)
y1 = 0 if (row - ksize) < 0 else (row - ksize)
for col in range(0, w + radius, 1):
x2 = w if (col + 1)>w else (col + 1)
x1 = 0 if (col - ksize) < 0 else (col - ksize)
cx = 0 if (col - radius) < 0 else (col - radius)
cy = 0 if (row - radius) < 0 else (row - radius)
num = (x2 - x1)*(y2 - y1)
for i in range(0, 3, 1):
s = get_block_sum(ii, x1, y1, x2, y2, i)
result[cy, cx][i] = s // num
cv.imshow("integral fast blur", result)
# cv.imwrite("./result.png", result)
src = cv.imread("./test.png")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)
sum_table = cv.integral(src, sdepth=cv.CV_32S)
blur_demo(src, sum_table)
cv.waitKey(0)
cv.destroyAllWindows()