-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
237 lines (187 loc) · 9.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import argparse
import datetime
import json
import time
import numpy as np
from pathlib import Path
import random
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from engine import train_one_epoch
from util.datasets import ScienceQADataSet
from memvp.build import create_model
# import bitsandbytes as bnb
def get_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=400, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--llama_model_path', default='./llama', type=str,
help='path of llama model')
parser.add_argument('--llm_model', default='7B', type=str, metavar='MODEL',
help='Name of llm model to train')
parser.add_argument('--cpu_load', action='store_true', help='load the model on cpu and avoid OOM on gpu')
parser.add_argument('--emb', type=int, default=320)
parser.add_argument('--adapter_dim', type=int, default=8, metavar='LENGTH', help='the dims of adapter layer')
parser.add_argument('--hidden_proj', type=int, default=128, metavar='LENGTH',
help='the visual adapter dim')
parser.add_argument('--adapter_scale', type=float, default=1., metavar='LENGTH', help='the scales of adapter layer')
parser.add_argument('--max_seq_len', type=int, default=512, metavar='LENGTH',
help='the maximum sequence length')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='clip gradient',
help='clips gradient norm of an iterable of parameters')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--gradient_checkpointing', action='store_true',
help='saving memory costs via gradient_checkpointing')
parser.add_argument('--warmup_epochs', type=float, default=40, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='/instruction_dataset/', type=str,
help='dataset path')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# datasets
parser.add_argument('--prompt_format',
type=str,
default='CQM-A',
choices=[
'CQM-A', 'CQM-LA', 'CQM-EA', 'CQM-LEA', 'CQM-ELA', 'CQM-AL', 'CQM-AE', 'CQM-ALE', 'QCM-A',
'QCM-LA', 'QCM-EA', 'QCM-LEA', 'QCM-ELA', 'QCM-AL', 'QCM-AE', 'QCM-ALE', 'QCML-A', 'QCME-A',
'QCMLE-A', 'QCLM-A', 'QCEM-A', 'QCLEM-A', 'QCML-AE', 'Q-A', 'QM-A', 'Q-AL', 'QM-EA'
],
help='prompt format template')
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
parser.add_argument('--caption_file', type=str, default='./data/captions.json')
parser.add_argument('--data_root', type=str, default='./data')
parser.add_argument('--use_caption', action='store_true', help='use image captions or not')
parser.add_argument('--do_pretrain', action='store_true', help='pre-train on large scale vl instruction')
parser.add_argument('--dataset', type=str, default='sqa')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = False
args.is_train = True
dataset_train = ScienceQADataSet(args, 'train', args.llama_model_path, args.max_seq_len)
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# define the model
model = create_model(args)
#print(model)
#exit()
model.to(device)
# for debug. print the data type.
for name, param in model.named_parameters():
print(name, param.dtype)
model_without_ddp = model
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
print(args.gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.param_groups_weight_decay(model_without_ddp, args.weight_decay)
# following qlora: apply paged optimizer
# optimizer = bnb.optim.AdamW32bit(param_groups, lr=args.lr, betas=(0.9, 0.95),is_paged=True) #
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
# mixed precision scaler
loss_scaler = NativeScaler()
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if args.output_dir:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, }
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)