forked from chainer/chainerrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ppo_batch_gym.py
204 lines (177 loc) · 7.59 KB
/
train_ppo_batch_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""An example of training PPO against OpenAI Gym Envs.
This script is an example of training a PPO agent against OpenAI Gym envs.
Both discrete and continuous action spaces are supported.
To solve CartPole-v0, run:
python train_ppo_gym.py --env CartPole-v0
"""
import argparse
import functools
import chainer
from chainer import functions as F
from chainer import links as L
import gym
import gym.spaces
import numpy as np
import chainerrl
from chainerrl.agents import PPO
from chainerrl import experiments
from chainerrl import misc
from chainerrl.optimizers.nonbias_weight_decay import NonbiasWeightDecay
def main():
import logging
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--env', type=str, default='Hopper-v2')
parser.add_argument('--num-envs', type=int, default=1)
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--steps', type=int, default=10 ** 6)
parser.add_argument('--eval-interval', type=int, default=10000)
parser.add_argument('--eval-n-runs', type=int, default=10)
parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
parser.add_argument('--standardize-advantages', action='store_true')
parser.add_argument('--render', action='store_true', default=False)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--weight-decay', type=float, default=0.0)
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--logger-level', type=int, default=logging.DEBUG)
parser.add_argument('--monitor', action='store_true')
parser.add_argument('--window-size', type=int, default=100)
parser.add_argument('--update-interval', type=int, default=2048)
parser.add_argument('--log-interval', type=int, default=1000)
parser.add_argument('--batchsize', type=int, default=64)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--entropy-coef', type=float, default=0.0)
args = parser.parse_args()
logging.basicConfig(level=args.logger_level)
# Set a random seed used in ChainerRL
misc.set_random_seed(args.seed, gpus=(args.gpu,))
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
assert process_seeds.max() < 2 ** 32
args.outdir = experiments.prepare_output_dir(args, args.outdir)
def make_env(process_idx, test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
process_seed = int(process_seeds[process_idx])
env_seed = 2 ** 32 - 1 - process_seed if test else process_seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = chainerrl.wrappers.Monitor(env, args.outdir)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if args.render:
env = chainerrl.wrappers.Render(env)
return env
def make_batch_env(test):
return chainerrl.envs.MultiprocessVectorEnv(
[functools.partial(make_env, idx, test)
for idx, env in enumerate(range(args.num_envs))])
# Only for getting timesteps, and obs-action spaces
sample_env = gym.make(args.env)
timestep_limit = sample_env.spec.max_episode_steps
obs_space = sample_env.observation_space
action_space = sample_env.action_space
# Normalize observations based on their empirical mean and variance
obs_normalizer = chainerrl.links.EmpiricalNormalization(
obs_space.low.size, clip_threshold=5)
winit_last = chainer.initializers.LeCunNormal(1e-2)
# Switch policy types accordingly to action space types
if isinstance(action_space, gym.spaces.Discrete):
n_actions = action_space.n
policy = chainer.Sequential(
L.Linear(None, 64),
F.tanh,
L.Linear(None, 64),
F.tanh,
L.Linear(None, n_actions, initialW=winit_last),
chainerrl.distribution.SoftmaxDistribution,
)
elif isinstance(action_space, gym.spaces.Box):
action_size = action_space.low.size
policy = chainer.Sequential(
L.Linear(None, 64),
F.tanh,
L.Linear(None, 64),
F.tanh,
L.Linear(None, action_size, initialW=winit_last),
chainerrl.policies.GaussianHeadWithStateIndependentCovariance(
action_size=action_size,
var_type='diagonal',
var_func=lambda x: F.exp(2 * x), # Parameterize log std
var_param_init=0, # log std = 0 => std = 1
),
)
else:
print("""\
This example only supports gym.spaces.Box or gym.spaces.Discrete action spaces.""") # NOQA
return
vf = chainer.Sequential(
L.Linear(None, 64),
F.tanh,
L.Linear(None, 64),
F.tanh,
L.Linear(None, 1),
)
# Combine a policy and a value function into a single model
model = chainerrl.links.Branched(policy, vf)
opt = chainer.optimizers.Adam(alpha=args.lr, eps=1e-5)
opt.setup(model)
if args.weight_decay > 0:
opt.add_hook(NonbiasWeightDecay(args.weight_decay))
agent = PPO(model, opt,
obs_normalizer=obs_normalizer,
gpu=args.gpu,
update_interval=args.update_interval,
minibatch_size=args.batchsize, epochs=args.epochs,
clip_eps_vf=None, entropy_coef=args.entropy_coef,
standardize_advantages=args.standardize_advantages,
)
if args.load:
agent.load(args.load)
if args.demo:
env = make_batch_env(True)
eval_stats = experiments.eval_performance(
env=env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
# Linearly decay the learning rate to zero
def lr_setter(env, agent, value):
agent.optimizer.alpha = value
lr_decay_hook = experiments.LinearInterpolationHook(
args.steps, args.lr, 0, lr_setter)
experiments.train_agent_batch_with_evaluation(
agent=agent,
env=make_batch_env(False),
eval_env=make_batch_env(True),
outdir=args.outdir,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
log_interval=args.log_interval,
return_window_size=args.window_size,
max_episode_len=timestep_limit,
save_best_so_far_agent=False,
step_hooks=[
lr_decay_hook,
],
)
if __name__ == '__main__':
main()