forked from chainer/chainerrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_a3c_gym.py
202 lines (166 loc) · 7.75 KB
/
train_a3c_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""An example of training A3C against OpenAI Gym Envs.
This script is an example of training a A3C agent against OpenAI Gym envs.
Both discrete and continuous action spaces are supported.
To solve CartPole-v0, run:
python train_a3c_gym.py 8 --env CartPole-v0
To solve InvertedPendulum-v1, run:
python train_a3c_gym.py 8 --env InvertedPendulum-v1 --arch LSTMGaussian --t-max 50 # noqa
"""
import argparse
import os
# This prevents numpy from using multiple threads
os.environ['OMP_NUM_THREADS'] = '1' # NOQA
import chainer
from chainer import functions as F
from chainer import links as L
import gym
import numpy as np
import chainerrl
from chainerrl.agents import a3c
from chainerrl import experiments
from chainerrl import links
from chainerrl import misc
from chainerrl.optimizers.nonbias_weight_decay import NonbiasWeightDecay
from chainerrl.optimizers import rmsprop_async
from chainerrl import policies
from chainerrl.recurrent import RecurrentChainMixin
from chainerrl import v_function
class A3CFFSoftmax(chainer.ChainList, a3c.A3CModel):
"""An example of A3C feedforward softmax policy."""
def __init__(self, ndim_obs, n_actions, hidden_sizes=(200, 200)):
self.pi = policies.SoftmaxPolicy(
model=links.MLP(ndim_obs, n_actions, hidden_sizes))
self.v = links.MLP(ndim_obs, 1, hidden_sizes=hidden_sizes)
super().__init__(self.pi, self.v)
def pi_and_v(self, state):
return self.pi(state), self.v(state)
class A3CFFMellowmax(chainer.ChainList, a3c.A3CModel):
"""An example of A3C feedforward mellowmax policy."""
def __init__(self, ndim_obs, n_actions, hidden_sizes=(200, 200)):
self.pi = policies.MellowmaxPolicy(
model=links.MLP(ndim_obs, n_actions, hidden_sizes))
self.v = links.MLP(ndim_obs, 1, hidden_sizes=hidden_sizes)
super().__init__(self.pi, self.v)
def pi_and_v(self, state):
return self.pi(state), self.v(state)
class A3CLSTMGaussian(chainer.ChainList, a3c.A3CModel, RecurrentChainMixin):
"""An example of A3C recurrent Gaussian policy."""
def __init__(self, obs_size, action_size, hidden_size=200, lstm_size=128):
self.pi_head = L.Linear(obs_size, hidden_size)
self.v_head = L.Linear(obs_size, hidden_size)
self.pi_lstm = L.LSTM(hidden_size, lstm_size)
self.v_lstm = L.LSTM(hidden_size, lstm_size)
self.pi = policies.FCGaussianPolicy(lstm_size, action_size)
self.v = v_function.FCVFunction(lstm_size)
super().__init__(self.pi_head, self.v_head,
self.pi_lstm, self.v_lstm, self.pi, self.v)
def pi_and_v(self, state):
def forward(head, lstm, tail):
h = F.relu(head(state))
h = lstm(h)
return tail(h)
pout = forward(self.pi_head, self.pi_lstm, self.pi)
vout = forward(self.v_head, self.v_lstm, self.v)
return pout, vout
def main():
import logging
parser = argparse.ArgumentParser()
parser.add_argument('processes', type=int)
parser.add_argument('--env', type=str, default='CartPole-v0')
parser.add_argument('--arch', type=str, default='FFSoftmax',
choices=('FFSoftmax', 'FFMellowmax', 'LSTMGaussian'))
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--t-max', type=int, default=5)
parser.add_argument('--beta', type=float, default=1e-2)
parser.add_argument('--profile', action='store_true')
parser.add_argument('--steps', type=int, default=8 * 10 ** 7)
parser.add_argument('--eval-interval', type=int, default=10 ** 5)
parser.add_argument('--eval-n-runs', type=int, default=10)
parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
parser.add_argument('--rmsprop-epsilon', type=float, default=1e-1)
parser.add_argument('--render', action='store_true', default=False)
parser.add_argument('--lr', type=float, default=7e-4)
parser.add_argument('--weight-decay', type=float, default=0.0)
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--logger-level', type=int, default=logging.DEBUG)
parser.add_argument('--monitor', action='store_true')
args = parser.parse_args()
logging.basicConfig(level=args.logger_level)
# Set a random seed used in ChainerRL.
# If you use more than one processes, the results will be no longer
# deterministic even with the same random seed.
misc.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.processes) + args.seed * args.processes
assert process_seeds.max() < 2 ** 32
args.outdir = experiments.prepare_output_dir(args, args.outdir)
def make_env(process_idx, test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
process_seed = int(process_seeds[process_idx])
env_seed = 2 ** 32 - 1 - process_seed if test else process_seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor and process_idx == 0:
env = chainerrl.wrappers.Monitor(env, args.outdir)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if args.render and process_idx == 0 and not test:
env = chainerrl.wrappers.Render(env)
return env
sample_env = gym.make(args.env)
timestep_limit = sample_env.spec.max_episode_steps
obs_space = sample_env.observation_space
action_space = sample_env.action_space
# Switch policy types accordingly to action space types
if args.arch == 'LSTMGaussian':
model = A3CLSTMGaussian(obs_space.low.size, action_space.low.size)
elif args.arch == 'FFSoftmax':
model = A3CFFSoftmax(obs_space.low.size, action_space.n)
elif args.arch == 'FFMellowmax':
model = A3CFFMellowmax(obs_space.low.size, action_space.n)
opt = rmsprop_async.RMSpropAsync(
lr=args.lr, eps=args.rmsprop_epsilon, alpha=0.99)
opt.setup(model)
opt.add_hook(chainer.optimizer.GradientClipping(40))
if args.weight_decay > 0:
opt.add_hook(NonbiasWeightDecay(args.weight_decay))
agent = a3c.A3C(model, opt, t_max=args.t_max, gamma=0.99,
beta=args.beta)
if args.load:
agent.load(args.load)
if args.demo:
env = make_env(0, True)
eval_stats = experiments.eval_performance(
env=env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
experiments.train_agent_async(
agent=agent,
outdir=args.outdir,
processes=args.processes,
make_env=make_env,
profile=args.profile,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
max_episode_len=timestep_limit)
if __name__ == '__main__':
main()