forked from chainer/chainerrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_a2c_gym.py
208 lines (175 loc) · 8.2 KB
/
train_a2c_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""An example of training A2C against OpenAI Gym Envs.
This script is an example of training a A2C agent against OpenAI Gym envs.
Both discrete and continuous action spaces are supported.
To solve CartPole-v0, run:
python train_a2c_gym.py 8 --env CartPole-v0
"""
import argparse
import functools
import chainer
from chainer import functions as F
import gym
import numpy as np
import chainerrl
from chainerrl.agents import a2c
from chainerrl import experiments
from chainerrl import links
from chainerrl import misc
from chainerrl.optimizers.nonbias_weight_decay import NonbiasWeightDecay
from chainerrl import policies
from chainerrl import v_function
class A2CFFSoftmax(chainer.ChainList, a2c.A2CModel):
"""An example of A2C feedforward softmax policy."""
def __init__(self, ndim_obs, n_actions, hidden_sizes=(64, 64)):
self.pi = policies.SoftmaxPolicy(
model=links.MLP(ndim_obs, n_actions, hidden_sizes))
self.v = links.MLP(ndim_obs, 1, hidden_sizes=hidden_sizes)
super().__init__(self.pi, self.v)
def pi_and_v(self, state):
return self.pi(state), self.v(state)
class A2CFFMellowmax(chainer.ChainList, a2c.A2CModel):
"""An example of A2C feedforward mellowmax policy."""
def __init__(self, ndim_obs, n_actions, hidden_sizes=(64, 64)):
self.pi = policies.MellowmaxPolicy(
model=links.MLP(ndim_obs, n_actions, hidden_sizes))
self.v = links.MLP(ndim_obs, 1, hidden_sizes=hidden_sizes)
super().__init__(self.pi, self.v)
def pi_and_v(self, state):
return self.pi(state), self.v(state)
class A2CGaussian(chainer.ChainList, a2c.A2CModel):
"""An example of A2C recurrent Gaussian policy."""
def __init__(self, obs_size, action_size):
self.pi = policies.FCGaussianPolicyWithFixedCovariance(
obs_size,
action_size,
np.log(np.e - 1),
n_hidden_layers=2,
n_hidden_channels=64,
nonlinearity=F.tanh)
self.v = v_function.FCVFunction(obs_size, n_hidden_layers=2,
n_hidden_channels=64,
nonlinearity=F.tanh)
super().__init__(self.pi, self.v)
def pi_and_v(self, state):
return self.pi(state), self.v(state)
def main():
import logging
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='Pendulum-v0')
parser.add_argument('--arch', type=str, default='Gaussian',
choices=('FFSoftmax', 'FFMellowmax', 'Gaussian'))
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--outdir', type=str, default=None)
parser.add_argument('--profile', action='store_true')
parser.add_argument('--steps', type=int, default=8 * 10 ** 7)
parser.add_argument('--update-steps', type=int, default=5)
parser.add_argument('--log-interval', type=int, default=1000)
parser.add_argument('--eval-interval', type=int, default=10 ** 5)
parser.add_argument('--eval-n-runs', type=int, default=10)
parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
parser.add_argument('--rmsprop-epsilon', type=float, default=1e-5)
parser.add_argument('--render', action='store_true', default=False)
parser.add_argument('--gamma', type=float, default=0.99,
help='discount factor')
parser.add_argument('--use-gae', action='store_true', default=False,
help='use generalized advantage estimation')
parser.add_argument('--tau', type=float, default=0.95,
help='gae parameter')
parser.add_argument('--lr', type=float, default=7e-4)
parser.add_argument('--weight-decay', type=float, default=0.0)
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--logger-level', type=int, default=logging.DEBUG)
parser.add_argument('--monitor', action='store_true')
parser.add_argument('--max-grad-norm', type=float, default=0.5,
help='value loss coefficient')
parser.add_argument('--alpha', type=float, default=0.99,
help='RMSprop optimizer alpha')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--num-envs', type=int, default=1)
args = parser.parse_args()
logging.basicConfig(level=args.logger_level)
# Set a random seed used in ChainerRL.
# If you use more than one processes, the results will be no longer
# deterministic even with the same random seed.
misc.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
assert process_seeds.max() < 2 ** 32
args.outdir = experiments.prepare_output_dir(args, args.outdir)
def make_env(process_idx, test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
process_seed = int(process_seeds[process_idx])
env_seed = 2 ** 32 - 1 - process_seed if test else process_seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor and process_idx == 0:
env = chainerrl.wrappers.Monitor(env, args.outdir)
# Scale rewards observed by agents
if not test:
misc.env_modifiers.make_reward_filtered(
env, lambda x: x * args.reward_scale_factor)
if args.render and process_idx == 0 and not test:
env = chainerrl.wrappers.Render(env)
return env
def make_batch_env(test):
return chainerrl.envs.MultiprocessVectorEnv(
[functools.partial(make_env, idx, test)
for idx, env in enumerate(range(args.num_envs))])
sample_env = make_env(process_idx=0, test=False)
timestep_limit = sample_env.spec.max_episode_steps
obs_space = sample_env.observation_space
action_space = sample_env.action_space
# Switch policy types accordingly to action space types
if args.arch == 'Gaussian':
model = A2CGaussian(obs_space.low.size, action_space.low.size)
elif args.arch == 'FFSoftmax':
model = A2CFFSoftmax(obs_space.low.size, action_space.n)
elif args.arch == 'FFMellowmax':
model = A2CFFMellowmax(obs_space.low.size, action_space.n)
optimizer = chainer.optimizers.RMSprop(args.lr,
eps=args.rmsprop_epsilon,
alpha=args.alpha)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.GradientClipping(args.max_grad_norm))
if args.weight_decay > 0:
optimizer.add_hook(NonbiasWeightDecay(args.weight_decay))
agent = a2c.A2C(model, optimizer, gamma=args.gamma,
gpu=args.gpu,
num_processes=args.num_envs,
update_steps=args.update_steps,
use_gae=args.use_gae,
tau=args.tau)
if args.load:
agent.load(args.load)
if args.demo:
env = make_env(0, True)
eval_stats = experiments.eval_performance(
env=env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
experiments.train_agent_batch_with_evaluation(
agent=agent,
env=make_batch_env(test=False),
eval_env=make_batch_env(test=True),
steps=args.steps,
log_interval=args.log_interval,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
outdir=args.outdir,
)
if __name__ == '__main__':
main()