forked from chainer/chainerrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_a3c_ale.py
195 lines (162 loc) · 7.11 KB
/
train_a3c_ale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import os
# Prevent numpy from using multiple threads
os.environ['OMP_NUM_THREADS'] = '1' # NOQA
import chainer
from chainer import links as L
import gym
import gym.wrappers
import numpy as np
import chainerrl
from chainerrl.agents import a3c
from chainerrl import experiments
from chainerrl import links
from chainerrl import misc
from chainerrl.optimizers.nonbias_weight_decay import NonbiasWeightDecay
from chainerrl.optimizers import rmsprop_async
from chainerrl import policy
from chainerrl.recurrent import RecurrentChainMixin
from chainerrl import v_function
from chainerrl.wrappers import atari_wrappers
class A3CFF(chainer.ChainList, a3c.A3CModel):
def __init__(self, n_actions):
self.head = links.NIPSDQNHead()
self.pi = policy.FCSoftmaxPolicy(
self.head.n_output_channels, n_actions)
self.v = v_function.FCVFunction(self.head.n_output_channels)
super().__init__(self.head, self.pi, self.v)
def pi_and_v(self, state):
out = self.head(state)
return self.pi(out), self.v(out)
class A3CLSTM(chainer.ChainList, a3c.A3CModel, RecurrentChainMixin):
def __init__(self, n_actions):
self.head = links.NIPSDQNHead()
self.pi = policy.FCSoftmaxPolicy(
self.head.n_output_channels, n_actions)
self.v = v_function.FCVFunction(self.head.n_output_channels)
self.lstm = L.LSTM(self.head.n_output_channels,
self.head.n_output_channels)
super().__init__(self.head, self.lstm, self.pi, self.v)
def pi_and_v(self, state):
h = self.head(state)
h = self.lstm(h)
return self.pi(h), self.v(h)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('processes', type=int)
parser.add_argument('--env', type=str, default='BreakoutNoFrameskip-v4')
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 31)')
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--t-max', type=int, default=5)
parser.add_argument('--beta', type=float, default=1e-2)
parser.add_argument('--profile', action='store_true')
parser.add_argument('--steps', type=int, default=8 * 10 ** 7)
parser.add_argument('--max-frames', type=int,
default=30 * 60 * 60, # 30 minutes with 60 fps
help='Maximum number of frames for each episode.')
parser.add_argument('--lr', type=float, default=7e-4)
parser.add_argument('--eval-interval', type=int, default=10 ** 6)
parser.add_argument('--eval-n-runs', type=int, default=10)
parser.add_argument('--weight-decay', type=float, default=0.0)
parser.add_argument('--use-lstm', action='store_true')
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--logging-level', type=int, default=20,
help='Logging level. 10:DEBUG, 20:INFO etc.')
parser.add_argument('--render', action='store_true', default=False,
help='Render env states in a GUI window.')
parser.add_argument('--monitor', action='store_true', default=False,
help='Monitor env. Videos and additional information'
' are saved as output files.')
parser.set_defaults(use_lstm=False)
args = parser.parse_args()
import logging
logging.basicConfig(level=args.logging_level)
# Set a random seed used in ChainerRL.
# If you use more than one process (i.e. processes > 1),
# the results will be no longer be deterministic
# even with the same random seed.
misc.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.processes) + args.seed * args.processes
assert process_seeds.max() < 2 ** 31
args.outdir = experiments.prepare_output_dir(args, args.outdir)
print('Output files are saved in {}'.format(args.outdir))
n_actions = gym.make(args.env).action_space.n
if args.use_lstm:
model = A3CLSTM(n_actions)
else:
model = A3CFF(n_actions)
# Draw the computational graph and save it in the output directory.
fake_obs = chainer.Variable(
np.zeros((4, 84, 84), dtype=np.float32)[None],
name='observation')
with chainerrl.recurrent.state_reset(model):
# The state of the model is reset again after drawing the graph
chainerrl.misc.draw_computational_graph(
[model(fake_obs)],
os.path.join(args.outdir, 'model'))
opt = rmsprop_async.RMSpropAsync(lr=7e-4, eps=1e-1, alpha=0.99)
opt.setup(model)
opt.add_hook(chainer.optimizer.GradientClipping(40))
if args.weight_decay > 0:
opt.add_hook(NonbiasWeightDecay(args.weight_decay))
def phi(x):
# Feature extractor
return np.asarray(x, dtype=np.float32) / 255
agent = a3c.A3C(model, opt, t_max=args.t_max, gamma=0.99,
beta=args.beta, phi=phi)
if args.load:
agent.load(args.load)
def make_env(process_idx, test):
# Use different random seeds for train and test envs
process_seed = process_seeds[process_idx]
env_seed = 2 ** 31 - 1 - process_seed if test else process_seed
env = atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
episode_life=not test,
clip_rewards=not test)
env.seed(int(env_seed))
if args.monitor:
env = chainerrl.wrappers.Monitor(
env, args.outdir,
mode='evaluation' if test else 'training')
if args.render:
env = chainerrl.wrappers.Render(env)
return env
if args.demo:
env = make_env(0, True)
eval_stats = experiments.eval_performance(
env=env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs)
print('n_runs: {} mean: {} median: {} stdev: {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
# Linearly decay the learning rate to zero
def lr_setter(env, agent, value):
agent.optimizer.lr = value
lr_decay_hook = experiments.LinearInterpolationHook(
args.steps, args.lr, 0, lr_setter)
experiments.train_agent_async(
agent=agent,
outdir=args.outdir,
processes=args.processes,
make_env=make_env,
profile=args.profile,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
global_step_hooks=[lr_decay_hook],
save_best_so_far_agent=False,
)
if __name__ == '__main__':
main()