-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathSVM.py
346 lines (299 loc) · 13.5 KB
/
SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/python
# -*- coding: utf-8 -*-
# @Time : 2018/5/10 下午5:14
# @Author : ComeOnJian
# @File : SVM.py
# 参考 SVM https://blog.csdn.net/sinat_33829806/article/details/78388025
import math
import numpy as np
import random
import copy
import re
from sklearn import metrics
import pandas as pd
from sklearn.preprocessing import LabelBinarizer
from sklearn import svm
train_file = '../data/Titanic/train.csv'
test_file = '../data/Titanic/test.csv'
test_result_file = '../data/Titanic/gender_submission.csv'
def data_feature_engineering(full_data,age_default_avg=True,one_hot=True):
"""
:param full_data:全部数据集包括train,test
:param age_default_avg:age默认填充方式,是否使用平均值进行填充
:param one_hot: Embarked字符处理是否是one_hot编码还是映射处理
:return: 处理好的数据集
"""
for dataset in full_data:
# Pclass、Parch、SibSp不需要处理
# sex 0,1
dataset['Sex'] = dataset['Sex'].map(Passenger_sex).astype(int)
# FamilySize
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
# IsAlone
dataset['IsAlone'] = 0
isAlone_mask = dataset['FamilySize'] == 1
dataset.loc[isAlone_mask, 'IsAlone'] = 1
# Fare 离散化处理,6个阶段
fare_median = dataset['Fare'].median()
dataset['CategoricalFare'] = dataset['Fare'].fillna(fare_median)
dataset['CategoricalFare'] = pd.qcut(dataset['CategoricalFare'],6,labels=[0,1,2,3,4,5])
# Embarked映射处理,one-hot编码,极少部分缺失值处理
dataset['Embarked'] = dataset['Embarked'].fillna('S')
dataset['Embarked'] = dataset['Embarked'].astype(str)
if one_hot:
# 因为OneHotEncoder只能编码数值型,所以此处使用LabelBinarizer进行独热编码
Embarked_arr = LabelBinarizer().fit_transform(dataset['Embarked'])
dataset['Embarked_0'] = Embarked_arr[:, 0]
dataset['Embarked_1'] = Embarked_arr[:, 1]
dataset['Embarked_2'] = Embarked_arr[:, 2]
dataset.drop('Embarked',axis=1,inplace=True)
else:
# 字符串映射处理
dataset['Embarked'] = dataset['Embarked'].map(Passenger_Embarked).astype(int)
# Name选取称呼Title_name
dataset['TitleName'] = dataset['Name'].apply(get_title_name)
dataset['TitleName'] = dataset['TitleName'].replace('Mme', 'Mrs')
dataset['TitleName'] = dataset['TitleName'].replace('Mlle', 'Miss')
dataset['TitleName'] = dataset['TitleName'].replace('Ms', 'Miss')
dataset['TitleName'] = dataset['TitleName'].replace(['Lady', 'Countess', 'Capt', 'Col', \
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'],
'Other')
dataset['TitleName'] = dataset['TitleName'].map(Passenger_TitleName).astype(int)
# age —— 缺失值,分段处理
if age_default_avg:
# 缺失值使用avg处理
age_avg = dataset['Age'].mean()
age_std = dataset['Age'].std()
age_null_count = dataset['Age'].isnull().sum()
age_default_list = np.random.randint(low=age_avg - age_std, high=age_avg + age_std, size=age_null_count)
dataset.loc[np.isnan(dataset['Age']), 'Age'] = age_default_list
dataset['Age'] = dataset['Age'].astype(int)
else:
# 将age作为label,预测缺失的age
# 特征为 TitleName,Sex,pclass,SibSP,Parch,IsAlone,CategoricalFare,FamileSize,Embarked
feature_list = ['TitleName', 'Sex', 'Pclass', 'SibSp', 'Parch', 'IsAlone','CategoricalFare',
'FamilySize', 'Embarked','Age']
if one_hot:
feature_list.append('Embarked_0')
feature_list.append('Embarked_1')
feature_list.append('Embarked_2')
feature_list.remove('Embarked')
Age_data = dataset.loc[:,feature_list]
un_Age_mask = np.isnan(Age_data['Age'])
Age_train = Age_data[~un_Age_mask] #要训练的Age
# print(Age_train.shape)
feature_list.remove('Age')
rf0 = RandomForestRegressor(n_estimators=60,oob_score=True,min_samples_split=10,min_samples_leaf=2,
max_depth=7,random_state=10)
rf0.fit(Age_train[feature_list],Age_train['Age'])
def set_default_age(age):
if np.isnan(age['Age']):
# print(age['PassengerId'])
# print age.loc[feature_list]
data_x = np.array(age.loc[feature_list]).reshape(1,-1)
# print data_x
age_v = round(rf0.predict(data_x))
# print('pred:',age_v)
# age['Age'] = age_v
return age_v
# print age
return age['Age']
dataset['Age'] = dataset.apply(set_default_age, axis=1)
# print(dataset.tail())
#
# data_age_no_full = dataset[dataset['Age'].]
# pd.cut与pd.qcut的区别,前者是根据取值范围来均匀划分,
# 后者是根据取值范围的各个取值的频率来换分,划分后的某个区间的频率数相同
# print(dataset.tail())
dataset['CategoricalAge'] = pd.cut(dataset['Age'], 5,labels=[0,1,2,3,4])
return full_data
def data_feature_select(full_data):
"""
:param full_data:全部数据集
:return:
"""
for data_set in full_data:
drop_list = ['PassengerId','Name','Age','Fare','Ticket','Cabin']
data_set.drop(drop_list,axis=1,inplace=True)
train_y = np.array(full_data[0]['Survived'])
train = full_data[0].drop('Survived',axis=1,inplace=False)
# print(train.head())
train_X = np.array(train)
test_X = np.array(full_data[1])
return train_X,train_y,test_X
def Passenger_sex(x):
sex = {'female': 0, 'male': 1}
return sex[x]
def Passenger_Embarked(x):
Embarked = {'S': 0, 'C': 1 , 'Q': 2}
return Embarked[x]
def Passenger_TitleName(x):
TitleName = {'Mr': 0, 'Miss': 1, 'Mrs': 2,'Master': 3, 'Other': 4}
return TitleName[x]
def Passenger_Survived(x):
Survived = {0: -1, 1: 1}
return Survived[x]
def get_title_name(name):
title_s = re.search(' ([A-Za-z]+)\.', name)
if title_s:
return title_s.group(1)
return ""
class SVM():
def __init__(self,kernal,maxIter,C,epsilon,sigma = 0.001):
"""
:param kernal:核函数
:param maxIter:最大迭代次数
:param C:松弛变量前的惩罚系数
:param epseion:
"""
self.kernal = kernal
self.C = C
self.maxIter = maxIter
self.epsilon = epsilon
self.sigma = sigma #高斯核函数的sigma值
def train(self,train_X,train_y):
self.sample_num = train_X.shape[0]
self.feature_num = train_X.shape[1]
self.labels =train_y
self.samples = train_X
# 算法的模型为 《统计学习方法》——公式7.104,主要包括a,b,核函数
self.a = np.zeros(self.sample_num)#[0 for a_i in range(self.sample_num)]
self.b = 0
self.eCache = np.zeros(shape=(self.sample_num,2))# 存储差值
self._smo()
# self._update()
def predict(self,test_x):
# 《统计学习方法》——公式7.104,计算预测值
pre_v = 0
for index in range(self.sample_num):
pre_v = pre_v + self.a[index] * self.labels[index] * self._kernel(test_x,self.samples[index])
pre_v = pre_v + self.b
return np.sign(pre_v)
def _smo(self):
pre_a = copy.deepcopy(self.a) # 复制,pre_a是old的a数组
for iter in range(self.maxIter):
flag = 1
for index in range(self.sample_num):
diff = 0
# self._update()
E_i = self._calE(self.samples[index],self.labels[index])
j,E_j = self._chooseJ(index,E_i)
# 计算L H
(L,H) = self._calLH(pre_a,j,index)
# 《统计学习方法》——公式7.107,n = K11 + K22 - 2 * K12
n = self._kernel(self.samples[index],self.samples[index]) \
+ self._kernel(self.samples[j],self.samples[j])\
- 2 * self._kernel(self.samples[index],self.samples[j])
if (n == 0):
continue
# 《统计学习方法》——公式7.106,计算未剪切的a_j极值
self.a[j] = pre_a[j] + float(self.labels[j] * (E_i - E_j))/n
# 《统计学习方法》——公式7.108,计算剪切的a_j极值
if self.a[j] > H:
self.a[j] = H
elif self.a[j] < L:
self.a[j] = L
# 《统计学习方法》——公式7.109,更新a[i]
self.a[index] = pre_a[index] + self.labels[index] * self.labels[j] * (pre_a[j] - self.a[j])
# 更新b,《统计学习方法》——公式7.114到7.116,更新a[i]
b1 = self.b - E_i \
- self.labels[index] * self._kernel(self.samples[index],self.samples[index]) * (self.a[index] - pre_a[index]) \
- self.labels[j] * self._kernel(self.samples[j],self.samples[index]) * (self.a[j] - pre_a[j])
b2 = self.b - E_j \
- self.labels[index] * self._kernel(self.samples[index], self.samples[j]) * (
self.a[index] - pre_a[index]) \
- self.labels[j] * self._kernel(self.samples[j], self.samples[j]) * (self.a[j] - pre_a[j])
if (0 < self.a[index]< self.C):
self.b = b1
elif (0 < self.a[j]< self.C):
self.b = b2
else:
self.b = (b1 + b2)/2.0
# 更新E_i,E_j统计学习方法》——公式7.117,
self.eCache[j] = [1,self._calE(self.samples[j],self.labels[j])]
self.eCache[index] = [1,self._calE(self.samples[index],self.labels[index])]
diff = sum([abs(pre_a[m] - self.a[m]) for m in range(len(self.a))])
if diff < self.epsilon:
# 满足精度条件
flag = 0
pre_a = copy.deepcopy(self.a)
if flag == 0:
break
def _calE(self,sample,y):
# 计算E_i,输入X_i与真实值之间的误差,《统计学习方法》——公式7.105
pre_v = self.predict(sample)
return pre_v - y
def _calLH(self,a,j,i):
#《统计学习方法》——p126页
if(self.labels[j] != self.labels[i]):
return (max(0,a[j]-a[i]),min(self.C,self.C+a[j]-a[i]))
else:
return (max(0, a[j] + a[i] - self.C), min(self.C, a[j] + a[i]))
def _kernel(self,X_i,X_j):
"""
:param X_i:
:param X_j:
:return: 核函数K(X_i,X_j)计算结果
"""
result = 0.
# 高斯内核
if self.kernal == 'Gauss':
temp = -sum((X_i - X_j)**2)/(2 * self.sigma**2)
result = math.exp(temp)
# 线性内核
elif self.kernal == 'line':
result = sum(X_i * X_j)
return result
def _chooseJ(self,i,E_i):
# 选择变量
self.eCache[i] = [1,E_i]
choose_list = []
# 查找之前计算的可选择的的E_i
for cache_index in range(len(self.eCache)):
if self.eCache[cache_index][0] != 0 and cache_index != i:
choose_list.append(cache_index)
if len(choose_list)>1:
E_k =0
delta_E = 0
max_E = 0
j = 0 # 要选择的J
E_j = 0# 及其对应的E
for choose_index in choose_list:
E_k = self._calE(self.samples[choose_index],self.labels[choose_index])
delta_E = abs(E_k-E_i)
if delta_E > max_E:
max_E = delta_E
j = choose_index
E_j = E_k
return j,E_j
# 初始状态,没有已经计算好的E
else:
j = self._randJ(i)
E_j = self._calE(self.samples[j],self.labels[j])
return j , E_j
def _randJ(self,i):
j = i
while(j == i):
j = random.randint(0,self.sample_num-1)
return j
if __name__ == '__main__':
train = pd.read_csv(train_file)
test = pd.read_csv(test_file)
test_y = pd.read_csv(test_result_file)
train['Survived'] = train['Survived'].map(Passenger_Survived).astype(int)
full_data = [train, test]
full_data = data_feature_engineering(full_data, age_default_avg=True, one_hot=False)
train_X, train_y, test_X = data_feature_select(full_data)
svm1 = SVM('line',1000,0.05,0.001)
svm1.train(train_X, train_y)
results = []
for test_sample in test_X:
y = svm1.predict(test_sample)
results.append(y)
y_test_true = np.array(test_y['Survived'])
print("the svm model Accuracy : %.4g" % metrics.accuracy_score(y_pred=results, y_true=y_test_true))
# svm_s = svm.SVC(C=1,kernel='linear')
# svm_s.fit(train_X, train_y)
# pre_y = svm_s.predict(test_X)
# y_test_true = np.array(test_y['Survived'])
# print("the svm model Accuracy : %.4g" % metrics.accuracy_score(y_pred=pre_y, y_true=y_test_true))