-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrcil_utils.py
92 lines (83 loc) · 3.73 KB
/
rcil_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import torch.nn as nn
####### merged branches ####### begin
def merge(conv2d, bn2d, conv_bias=None):
if conv_bias is not None:
conv_bias = conv_bias.clone().to(conv2d.weight.device)
k = conv2d.weight.clone()
running_mean = bn2d.running_mean
running_var = bn2d.running_var
eps = bn2d.eps
gamma = bn2d.weight.abs() + eps
beta = bn2d.bias
gamma = gamma / 2.
beta = beta / 2.
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
if conv_bias is not None:
return k * t, beta - running_mean * gamma / std + t.view(-1) * conv_bias.view(-1)
else:
return k * t, beta - running_mean * gamma / std
def mergex(conv2d, bn2d, pos, conv_bias=None):
if conv_bias is not None:
conv_bias = conv_bias.clone().to(conv2d.weight.device)
k = conv2d.weight.clone()
running_mean = bn2d.running_mean[pos*256:(1+pos)*256]
running_var = bn2d.running_var[pos*256:(1+pos)*256]
eps = bn2d.eps
gamma = bn2d.weight.abs()[pos*256:(1+pos)*256] + eps
beta = bn2d.bias[pos*256:(1+pos)*256]
gamma = gamma / 2.
beta = beta / 2.
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
if conv_bias is not None:
return k * t, beta - running_mean * gamma / std + t.view(-1) * conv_bias.view(-1)
else:
return k * t, beta - running_mean * gamma / std
def init_right(conv2d, bn2d, conv2d_new, bn2d_new, init_type):
if init_type == 'original':
return conv2d_new, bn2d_new
return conv2d_new, bn2d_new
def convert_model(model, load_dict=None):
for name, mm in model.named_modules():
if hasattr(mm, 'convs'):
k1, b1 = merge(mm.convs.conv2, mm.convs.bn2, mm.convs.conv2.bias.data)
k2, b2 = merge(mm.convs.conv2_new, mm.convs.bn2_new, None)
k = k1 + k2
b = b1 + b2
mm.convs.conv2.weight.data[:,:,:,:] = k[:,:,:,:]
mm.convs.conv2.bias = nn.Parameter(b)
mm.convs.bn2.bias.data[:] = torch.zeros((mm.convs.bn2.weight.shape[0],))[:]
mm.convs.bn2.running_var.data[:] = torch.ones((mm.convs.bn2.weight.shape[0],))[:]
mm.convs.bn2.eps = 0
mm.convs.bn2.weight.data[:] = torch.ones((mm.convs.bn2.weight.shape[0],))[:]
mm.convs.bn2.running_mean.data[:] = torch.zeros((mm.convs.bn2.weight.shape[0],))[:]
mm.convs.bn2.eval()
mm.convs.conv2.eval()
for p in mm.convs.bn2.parameters():
p.requires_grad = False
for p in mm.convs.conv2.parameters():
p.requires_grad = False
elif hasattr(mm, 'map_convs'):
for i in range(4):
k1, b1 = mergex(mm.map_convs[i], mm.map_bn, i, mm.map_convs[i].bias.data)
k2, b2 = mergex(mm.map_convs_new[i], mm.map_bn_new, i, None)
k = k1 + k2
b = b1 + b2
mm.map_convs[i].weight.data[:,:,:,:] = k[:,:,:,:]
mm.map_convs[i].bias = nn.Parameter(b)
mm.map_convs[i].eval()
for p in mm.map_convs[i].parameters():
p.requires_grad = False
mm.map_bn.eval()
for p in mm.map_bn.parameters():
p.requires_grad = False
mm.map_bn.bias.data[:] = torch.zeros((mm.map_bn.weight.shape[0],))[:]
mm.map_bn.running_var.data[:] = torch.ones((mm.map_bn.weight.shape[0],))[:]
mm.map_bn.eps = 0
mm.map_bn.weight.data[:] = torch.ones((mm.map_bn.weight.shape[0],))[:]
mm.map_bn.running_mean.data[:] = torch.zeros((mm.map_bn.weight.shape[0],))[:]
return model
####### merged branches ####### end
#################################################################