forked from hill-a/stable-baselines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_multiple_learn.py
61 lines (51 loc) · 1.69 KB
/
test_multiple_learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pytest
from stable_baselines import A2C, ACER, ACKTR, PPO2
from stable_baselines.common.identity_env import IdentityEnv, IdentityEnvBox
from stable_baselines.common.vec_env import DummyVecEnv
# TODO: Fix multiple-learn on commented-out models (Issue #619).
MODEL_LIST = [
A2C,
ACER,
ACKTR,
PPO2,
# MPI-based models, which use traj_segment_generator instead of Runner.
#
# PPO1,
# TRPO,
# Off-policy models, which don't use Runner but reset every .learn() anyways.
#
# DDPG,
# SAC,
# TD3,
]
@pytest.mark.parametrize("model_class", MODEL_LIST)
def test_model_multiple_learn_no_reset(model_class):
"""Check that when we call learn multiple times, we don't unnecessarily
reset the environment.
"""
if model_class is ACER:
def make_env():
return IdentityEnv(ep_length=1e10, dim=2)
else:
def make_env():
return IdentityEnvBox(ep_length=1e10)
env = make_env()
venv = DummyVecEnv([lambda: env])
model = model_class(policy="MlpPolicy", env=venv)
_check_reset_count(model, env)
# Try again following a `set_env`.
env = make_env()
venv = DummyVecEnv([lambda: env])
assert env.num_resets == 0
model.set_env(venv)
_check_reset_count(model, env)
def _check_reset_count(model, env: IdentityEnv):
assert env.num_resets == 0
_prev_runner = None
for _ in range(4):
model.learn(total_timesteps=400)
# Lazy constructor for Runner fires upon the first call to learn.
assert env.num_resets == 1
if _prev_runner is not None:
assert _prev_runner is model.runner, "Runner shouldn't change"
_prev_runner = model.runner