forked from hill-a/stable-baselines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_identity.py
77 lines (63 loc) · 3.29 KB
/
test_identity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import pytest
import numpy as np
from stable_baselines import A2C, ACER, ACKTR, DQN, DDPG, SAC, PPO1, PPO2, TD3, TRPO
from stable_baselines.ddpg import NormalActionNoise
from stable_baselines.common.identity_env import IdentityEnv, IdentityEnvBox
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines.common.evaluation import evaluate_policy
# Hyperparameters for learning identity for each RL model
LEARN_FUNC_DICT = {
'a2c': lambda e: A2C(policy="MlpPolicy", learning_rate=1e-3, n_steps=1,
gamma=0.7, env=e, seed=0).learn(total_timesteps=10000),
'acer': lambda e: ACER(policy="MlpPolicy", env=e, seed=0,
n_steps=1, replay_ratio=1).learn(total_timesteps=15000),
'acktr': lambda e: ACKTR(policy="MlpPolicy", env=e, seed=0,
learning_rate=5e-4, n_steps=1).learn(total_timesteps=20000),
'dqn': lambda e: DQN(policy="MlpPolicy", batch_size=16, gamma=0.1,
exploration_fraction=0.001, env=e, seed=0).learn(total_timesteps=40000),
'ppo1': lambda e: PPO1(policy="MlpPolicy", env=e, seed=0, lam=0.5,
optim_batchsize=16, optim_stepsize=1e-3).learn(total_timesteps=15000),
'ppo2': lambda e: PPO2(policy="MlpPolicy", env=e, seed=0,
learning_rate=1.5e-3, lam=0.8).learn(total_timesteps=20000),
'trpo': lambda e: TRPO(policy="MlpPolicy", env=e, seed=0,
max_kl=0.05, lam=0.7).learn(total_timesteps=10000),
}
@pytest.mark.slow
@pytest.mark.parametrize("model_name", ['a2c', 'acer', 'acktr', 'dqn', 'ppo1', 'ppo2', 'trpo'])
def test_identity(model_name):
"""
Test if the algorithm (with a given policy)
can learn an identity transformation (i.e. return observation as an action)
:param model_name: (str) Name of the RL model
"""
env = DummyVecEnv([lambda: IdentityEnv(10)])
model = LEARN_FUNC_DICT[model_name](env)
evaluate_policy(model, env, n_eval_episodes=20, reward_threshold=90)
obs = env.reset()
assert model.action_probability(obs).shape == (1, 10), "Error: action_probability not returning correct shape"
action = env.action_space.sample()
action_prob = model.action_probability(obs, actions=action)
assert np.prod(action_prob.shape) == 1, "Error: not scalar probability"
action_logprob = model.action_probability(obs, actions=action, logp=True)
assert np.allclose(action_prob, np.exp(action_logprob)), (action_prob, action_logprob)
# Free memory
del model, env
@pytest.mark.slow
@pytest.mark.parametrize("model_class", [DDPG, TD3, SAC])
def test_identity_continuous(model_class):
"""
Test if the algorithm (with a given policy)
can learn an identity transformation (i.e. return observation as an action)
"""
env = DummyVecEnv([lambda: IdentityEnvBox(eps=0.5)])
if model_class in [DDPG, TD3]:
n_actions = 1
action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))
else:
action_noise = None
model = model_class("MlpPolicy", env, gamma=0.1, seed=0,
action_noise=action_noise, buffer_size=int(1e6))
model.learn(total_timesteps=20000)
evaluate_policy(model, env, n_eval_episodes=20, reward_threshold=90)
# Free memory
del model, env