forked from jmcmahan/LinVer-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 1
/
gauss_quadrature.m
executable file
·162 lines (132 loc) · 4.38 KB
/
gauss_quadrature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
function [t, w] = gauss_quadrature(measure, order, mparam)
% [t, w] = gauss_quadrature(measure, order) - Compute the Gaussian
% quadrature nodes and weights for a selected integration order and
% measure for integration. For the uniform and beta measures,
% integration is over [-1, 1], for the gaussian measure, it is
% -infty, infty.
%
% measure = 'uniform', 'beta', 'gaussian', 'gamma', a string selecting
% which probability measure the integral is weighted by.
%
% order = order of the integration (number of nodes)
%
% mparam = supplemental parameters for the measures. Use for the
% following measures:
% beta (note this is the (1-x)^alpha * (1+x)^beta notation)
% **********************************************************
% mparam.alpha = alpha parameter
% mparam.beta = beta parameter
%
% gamma (this is the x^(alpha-1)*exp(-x/beta) version)
% **********************************************************
% mparam.alpha = alpha parameter
% mparam.beta = beta parameter
%
% Returns:
% t - nodes to evalate the integrand on
% w - weights for the quadrature rule
N = order;
if strcmp(measure, 'gaussian')
% Recurrence relation for the Hermite polynomials
a = ones(N, 1);
b = zeros(N, 1);
c = (0:(N-1))';
elseif strcmp(measure, 'uniform')
% Recurrence relation for the Legendre polynomials
n = N-1;
a = (2*(0:n) +1)'./((0:n)+1)';
b = zeros(N,1);
c = (0:n)'./((0:n)+1)';
elseif strcmp(measure, 'beta')
% Recurrence relation for the Jacobi polynomials
if nargin < 3
al = 1; bt = 1;
else
al = mparam.alpha;
bt = mparam.beta;
end
n = (0:(N-1));
a = 0.5 * (2*n+al+bt+1) .* (2*n+al+bt+2) ...
./ ((n+1) .* (n+al+bt+1));
b = 0.5 * (al^2-bt^2) .* (2*n+al+bt+1) ...
./ ((n+1) .* (n+al+bt+1) .* (2*n+al+bt));
c = (n+al).*(n+bt).*(2*n+al+bt+2) ...
./ ((n+1) .* (n+al+bt+1) .* (2*n+al+bt));
% Correction to first term
a(1) = 0.5 * (al + bt + 2);
b(1) = 0.5 * (al - bt);
elseif strcmp(measure, 'gamma')
% Recurrence relation for the Laguerre polynomials
if nargin < 3
al = 2; bt = 1;
else
al = mparam.alpha;
bt = mparam.beta;
end
n = (0:(N-1));
a = -1./(n+1);
b = (2*n + al)./(n+1);
c = n./(al -1 + n);
end
T = -diag(b./a) + diag(1./a(1:N-1), 1) + diag(c(2:N)./a(2:N),-1);
if sum(sum(T ~= T'))
alpha = -b ./ a;
beta = sqrt(c(2:end)./(a(1:(N-1)).*a(2:end)));
T = diag(alpha) + diag(beta, 1) + diag(beta, -1);
end
[V, t] = eig(T);
% Nodes / abscissa
t = diag(t);
% Weights
w = ((V(1,:)).^2)';
if strcmp(measure, 'gamma')
% Scale the nodes in this special case
t = bt*t;
end
end
function scratch()
% This function should be deleted later. It's just for holding the
% reference code
% I'll add a list of some of the polynomials to use for
% checking results
% Hermite
h0 = 1; h1 = [1 0]; h2 = [1 0 -1]; h3 = [1 0 -3 0];
h4 = [1 0 -6 0 3]; h5 = [1 0 -10 0 15 0];
h6 = [1 0 -15 0 45 0 -15]; h7 = [1 0 -21 0 105 0 -105];
h8 = [1 0 -28 0 210 0 -420 0 105];
h9 = [1 0 -36 0 378 0 1260 0 945 0];
h10 = [1 0 -45 0 630 0 -3150 0 4725 0 -945];
% Legendre
l0 = 1; l1 = [1 0]; l2 = [3 0 -1]/2; l3 = [5 0 -3 0]/2;
l4 = [35 0 -30 0 3]/8; l5 = [63 0 -70 0 15 0]/8;
l6 = [231 0 -315 0 105 -5]/16; l7 = [429 0 -693 0 315 0 -35 0]/16;
l8 = [6435 0 -12012 0 6930 0 -1260 0 35]/128;
l9 = [12155 0 -25740 0 18018 0 -4620 0 315 0]/128;
l10 = [46189 0 -109395 0 90090 0 -30030 0 3465 0 -63]/256;
% Order to use
N = 4;
% Hermite recurrence relation (Gaussian weight)
a = ones(N,1);
b = zeros(N,1);
c = (0:(N-1))';
% Legendre recurrence relation (uniform weight)
n = N-1;
a = (2*(0:n) +1)'./((0:n)+1)';
b = zeros(N,1);
c = (0:n)'./((0:n)+1)';
% Jacobi recurrence relation (beta weight)
% These are the alpha and beta parameters for the beta distribution
al = 3; bt = 2;
al = 0; bt = 0;
% Denominator of this ridiculous expression
n = (0:(N-1));
a = 0.5 * (2*n+al+bt+1) .* (2*n+al+bt+2) ...
./ ((n+1) .* (n+al+bt+1));
b = 0.5 * (al^2-bt^2) .* (2*n+al+bt+1) ...
./ ((n+1) .* (n+al+bt+1) .* (2*n+al+bt));
c = (n+al).*(n+bt).*(2*n+al+bt+2) ...
./ ((n+1) .* (n+al+bt+1) .* (2*n+al+bt));
% Correction to first term
a(1) = 0.5 * (al + bt + 2);
b(1) = 0.5 * (al - bt);
end