forked from Kroery/DiffMOT
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiffmot.py
302 lines (242 loc) · 10.8 KB
/
diffmot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import torch
import numpy as np
import os.path as osp
import logging
from torch import nn, optim, utils
from tensorboardX import SummaryWriter
from tqdm.auto import tqdm
from dataset.original_dataset import DiffMOTDataset
from models.autoencoder import D2MP
from models.condition_embedding import History_motion_embedding
import time
# from tracker.DiffMOTtracker import diffmottracker
from tracking_utils.log import logger
from tracking_utils.timer import Timer
# This line is for training
from utils import calculate_iou, calculate_ade, original_shape
from early_stopping import EarlyStopping_Loss
def write_results(filename, results, data_type='mot'):
if data_type == 'mot':
save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
elif data_type == 'kitti':
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
else:
raise ValueError(data_type)
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids in results:
if data_type == 'kitti':
frame_id -= 1
for tlwh, track_id in zip(tlwhs, track_ids):
if track_id < 0:
continue
x1, y1, w, h = tlwh
x2, y2 = x1 + w, y1 + h
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h)
f.write(line)
logger.info('save results to {}'.format(filename))
def mkdirs(d):
if not osp.exists(d):
os.makedirs(d)
def custom_collate_fn(batch):
for sample in batch:
if 'image_path' in sample:
del sample['image_path']
return torch.utils.data.default_collate(batch)
class DiffMOT():
def __init__(self, config):
self.config = config
torch.backends.cudnn.benchmark = True
self._build()
def generate(self, conds, sample=1, bestof=True, flexibility=0.0, ret_traj=False):
cond_encodeds = self.model.encoder(conds)
track_pred = self.model.diffusion.sample(cond_encodeds, sample, bestof, flexibility=flexibility,
ret_traj=ret_traj)
return track_pred.squeeze(dim=0)
def step(self, data_loader, train=True):
self.model.train() if train else self.model.eval()
total_loss = 0
total_iou = 0
total_ade = 0
num_batches = len(data_loader)
for batch in tqdm(data_loader):
for k in batch:
batch[k] = batch[k].to(device=self.device, non_blocking=True)
loss = self.model(batch)
loss = loss.mean()
if train:
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
total_loss += loss.item()
# MeanIoU and MeanADE
with torch.no_grad():
predictions = self.generate(conds=batch['condition'], sample=1, bestof=True, flexibility=0.0,
ret_traj=False) # Batch_size, 4
dets = batch['condition'][:, 4, :4] # Batch_size, 4
predictions = predictions + dets # Batch_size, 4
targets = batch['cur_bbox'] # Batch_size, 4
width = batch['width'] # Batch_size
height = batch['height'] # Batch_size
original_preds = original_shape(predictions, width, height) # Batch_size, 4
original_gts = original_shape(targets, width, height) # Batch_size, 4
total_iou += calculate_iou(original_preds, original_gts)
total_ade += calculate_ade(original_preds, original_gts)
mean_loss = total_loss / num_batches
mean_iou = total_iou / num_batches
mean_ade = total_ade / num_batches
return {
'mean_loss': mean_loss,
'mean_iou': mean_iou,
'mean_ade': mean_ade
}
def train(self):
for epoch in range(1, self.config.epochs + 1):
print("Training")
train_metrics = self.step(data_loader=self.train_dataloader, train=True)
print("Validation")
val_metrics = self.step(data_loader=self.val_dataloader, train=False)
self.scheduler.step()
print(f"Epoch {epoch}/{self.config.epochs}")
print(
f"Train - Loss: {train_metrics['mean_loss']:.6f}, IoU: {train_metrics['mean_iou']:.6f}, ADE: {train_metrics['mean_ade']:.6f}")
print(
f"Val - Loss: {val_metrics['mean_loss']:.6f}, IoU: {val_metrics['mean_iou']:.6f}, ADE: {val_metrics['mean_ade']:.6f}")
self.early_stopping(val_metrics['mean_loss'], self.model, epoch, self.optimizer, self.scheduler,
self.model_dir, self.config.dataset)
if self.early_stopping.early_stop:
print("Early stopping")
break
def eval(self):
det_root = self.config.det_dir
img_root = det_root.replace('/detections/', '/')
seqs = [s for s in os.listdir(det_root)]
seqs.sort()
for seq in seqs:
print(seq)
det_path = osp.join(det_root, seq)
img_path = osp.join(img_root, seq, 'img1')
info_path = osp.join(self.config.info_dir, seq, 'seqinfo.ini')
seq_info = open(info_path).read()
seq_width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find('\nimHeight')])
seq_height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find('\nimExt')])
tracker = diffmottracker(self.config)
timer = Timer()
results = []
frame_id = 0
frames = [s for s in os.listdir(det_path)]
frames.sort()
imgs = [s for s in os.listdir(img_path)]
imgs.sort()
for i, f in enumerate(frames):
if frame_id % 10 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
timer.tic()
f_path = osp.join(det_path, f)
dets = np.loadtxt(f_path, dtype=np.float32, delimiter=',').reshape(-1, 6)[:, 1:6]
im_path = osp.join(img_path, imgs[i])
# img = cv2.imread(im_path)
tag = f"{seq}:{frame_id+1}"
# track
online_targets = tracker.update(dets, self.model, frame_id, seq_width, seq_height, tag, img)
# online_targets = tracker.update(dets, self.model, frame_id, seq_width, seq_height, tag)
online_tlwhs = []
online_ids = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
online_tlwhs.append(tlwh)
online_ids.append(tid)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_ids))
frame_id += 1
tracker.dump_cache()
result_root = self.config.save_dir
mkdirs(result_root)
result_filename = osp.join(result_root, '{}.txt'.format(seq))
write_results(result_filename, results)
def _build(self):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self._build_dir()
self._build_encoder()
self._build_model()
self._build_train_loader()
self._build_optimizer()
print("> Everything built. Have fun :)")
def _build_dir(self):
self.model_dir = osp.join("./experiments", self.config.eval_expname)
self.log_writer = SummaryWriter(log_dir=self.model_dir)
os.makedirs(self.model_dir, exist_ok=True)
log_name = '{}.log'.format(time.strftime('%Y-%m-%d-%H-%M'))
log_name = f"{self.config.dataset}_{log_name}"
log_dir = osp.join(self.model_dir, log_name)
self.log = logging.getLogger()
self.log.setLevel(logging.INFO)
handler = logging.FileHandler(log_dir)
handler.setLevel(logging.INFO)
self.log.addHandler(handler)
self.log.info("Config:")
self.log.info(self.config)
self.log.info("\n")
self.log.info("Eval on:")
self.log.info(self.config.dataset)
self.log.info("\n")
if self.config.eval_mode:
epoch = self.config.eval_at
checkpoint_dir = osp.join(self.model_dir, f"{self.config.dataset}_epoch{epoch}.pt")
self.checkpoint = torch.load(checkpoint_dir, map_location=self.device)
print("> Directory built!")
def _build_optimizer(self):
self.optimizer = optim.Adam(self.model.parameters(), lr=self.config.lr)
self.scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=0.98)
self.early_stopping = EarlyStopping_Loss(patience=self.config.patience, delta=self.config.delta)
print("> Optimizer built!")
def _build_encoder(self):
self.encoder = History_motion_embedding()
def _build_model(self):
""" Define Model """
config = self.config
model = D2MP(config, encoder=self.encoder)
self.model = model
self.model.to(self.device)
if not self.config.eval_mode:
self.model = torch.nn.DataParallel(self.model, self.config.gpus).to('cuda')
else:
self.model = self.model.cuda()
self.model = self.model.eval()
if self.config.eval_mode:
self.model.load_state_dict({k.replace('module.', ''): v for k, v in self.checkpoint['ddpm'].items()})
params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
print("> Model built!")
print('Network Version: ', self.config.network)
print(f'Network Params: {params}')
def _build_train_loader(self):
config = self.config
data_path = config.data_dir
train_path = f'{data_path}/train'
print("Train Dataset: " + train_path)
self.train_dataset = DiffMOTDataset(train_path, config)
print("len: ", len(self.train_dataset))
print("=" * 80)
val_path = f'{data_path}/val'
print("Validation Dataset: " + val_path)
self.val_dataset = DiffMOTDataset(val_path, config)
print("len: ", len(self.val_dataset))
self.train_dataloader = utils.data.DataLoader(
self.train_dataset,
batch_size=self.config.batch_size,
shuffle=True,
# num_workers=self.config.preprocess_workers,
# pin_memory=True,
collate_fn=custom_collate_fn
)
self.val_dataloader = utils.data.DataLoader(
self.val_dataset,
batch_size=self.config.batch_size,
shuffle=True,
# num_workers=self.config.preprocess_workers,
# pin_memory=True,
collate_fn=custom_collate_fn
)
print("> Train Dataset built!")