-
Notifications
You must be signed in to change notification settings - Fork 293
/
demo_pytextrank.py
86 lines (75 loc) · 2.79 KB
/
demo_pytextrank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from scattertext import SampleCorpora, RankDifference, dense_rank, PyTextRankPhrases, AssociationCompactor, \
produce_scattertext_explorer
from scattertext import CorpusFromParsedDocuments
import spacy
import numpy as np
import pytextrank
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe("textrank", last=True)
convention_df = SampleCorpora.ConventionData2012.get_data().assign(
parse=lambda df: df.text.apply(nlp),
party=lambda df: df.party.apply({'democrat': 'Democratic', 'republican': 'Republican'}.get)
)
corpus = CorpusFromParsedDocuments(
convention_df,
category_col='party',
parsed_col='parse',
feats_from_spacy_doc=PyTextRankPhrases()
).build(
).compact(
AssociationCompactor(2000, use_non_text_features=True)
)
print('Aggregate PyTextRank phrase scores')
term_category_scores = corpus.get_metadata_freq_df('')
print(term_category_scores)
term_ranks = np.argsort(np.argsort(-term_category_scores, axis=0), axis=0) + 1
metadata_descriptions = {
term: '<br/>' + '<br/>'.join(
'<b>%s</b> TextRank score rank: %s/%s' % (cat, term_ranks.loc[term, cat], corpus.get_num_metadata())
for cat in corpus.get_categories())
for term in corpus.get_metadata()
}
category_specific_prominence = term_category_scores.apply(
lambda r: r.Democratic if r.Democratic > r.Republican else -r.Republican,
axis=1
)
html = produce_scattertext_explorer(
corpus,
category='Democratic',
not_category_name='Republican',
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
transform=dense_rank,
use_non_text_features=True,
metadata=corpus.get_df()['speaker'],
scores=category_specific_prominence,
sort_by_dist=False,
# ensure that we search for term in visualization
topic_model_term_lists={term: [term] for term in corpus.get_metadata()},
topic_model_preview_size=0, # ensure singleton topics aren't shown
metadata_descriptions=metadata_descriptions,
use_full_doc=True
)
file_name = 'demo_pytextrank_prominence.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('Open %s in Chrome or Firefox.' % file_name)
html = produce_scattertext_explorer(
corpus,
category='Democratic',
not_category_name='Republican',
width_in_pixels=1000,
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
transform=dense_rank,
use_non_text_features=True,
metadata=corpus.get_df()['speaker'],
term_scorer=RankDifference(),
topic_model_term_lists={term: [term] for term in corpus.get_metadata()},
topic_model_preview_size=0, # ensure singleton topics aren't shown
metadata_descriptions=metadata_descriptions,
use_full_doc=True
)
file_name = 'demo_pytextrank_rankdiff.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('Open %s in Chrome or Firefox.' % file_name)