-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc3d_symbol.py
65 lines (55 loc) · 3.29 KB
/
c3d_symbol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import find_mxnet
import mxnet as mx
'''
def get_symbol(num_classes):
input_data = mx.symbol.Variable('data')
label =mx.symbol.Variable('label')
data = mx.symbol.Flatten(data=input_data)
fc6 = mx.symbol.FullyConnected(data=data, num_hidden=20)
relu6 = mx.symbol.Activation(data=fc6, act_type='relu')
#Loss
fc8 = mx.symbol.FullyConnected(data=relu6, num_hidden=num_classes)
softmax = mx.symbol.SoftmaxOutput(data=fc8, label=label, name='softmax')
return softmax
'''
def get_symbol(num_classes):
input_data = mx.symbol.Variable('data')
label = mx.symbol.Variable('label')
#input_data = mx.symbol.Crop(data=input_data, num_args=2, h_w=(112,112))
## 1st group
conv1 = mx.symbol.Convolution(data=input_data, kernel=(3,3,3), stride=(1,1,1), pad=(1,1,1), num_filter=64, name='conv1', cudnn_tune='fastest', layout='NCDHW')
relu1 = mx.symbol.Activation(data=conv1, act_type='relu')
pool1 = mx.symbol.Pooling(data=relu1, pool_type='max', kernel=(1,2,2), stride=(1,2,2))
## 2nd group
conv2 = mx.symbol.Convolution(data=pool1, kernel=(3,3,3), stride=(1,1,1), pad=(1,1,1), num_filter=128, name='conv2', cudnn_tune='fastest', layout='NCDHW')
relu2 = mx.symbol.Activation(data=conv2, act_type='relu')
pool2 = mx.symbol.Pooling(data=relu2, pool_type='max', kernel=(2,2,2), stride=(2,2,2))
## 3rd group
conv3a = mx.symbol.Convolution(data=pool2, kernel=(3,3,3), stride=(1,1,1), pad=(1,1,1), num_filter=256, cudnn_tune='fastest', layout='NCDHW')
relu3a = mx.symbol.Activation(data=conv3a, act_type='relu')
#conv3b = mx.symbol.Convolution(data=relu3a, kernel=(3,3,3), stride=(1,1,1), num_filter=256)
#relu3b = mx.symbol.Activation(data=conv3b, act_type='relu')
pool3b = mx.symbol.Pooling(data=relu3a, pool_type='max', kernel=(2,2,2), stride=(2,2,2))
## 4th group
conv4a = mx.symbol.Convolution(data=pool3b, kernel=(3,3,3), stride=(1,1,1), pad=(1,1,1), num_filter=256, cudnn_tune='fastest', layout='NCDHW')
relu4a = mx.symbol.Activation(data=conv4a, act_type='relu')
#conv4b = mx.symbol.Convolution(data=relu4a, kernel=(3,3,3), stride=(1,1,1), num_filter=512)
#relu4b = mx.symbol.Activation(data=conv4b, act_type='relu')
pool4b = mx.symbol.Pooling(data=relu4a, pool_type='max', kernel=(2,2,2), stride=(2,2,2))
## 5th group
conv5a = mx.symbol.Convolution(data=pool4b, kernel=(3,3,3), stride=(1,1,1), pad=(1,1,1), num_filter=256, cudnn_tune='fastest', layout='NCDHW')
relu5a = mx.symbol.Activation(data=conv5a, act_type='relu')
#conv5b = mx.symbol.Convolution(data=relu5a, kernel=(3,3,3), stride=(1,1,1), num_filter=512)
#relu5b = mx.symbol.Activation(data=conv5b, act_type='relu')
pool5b = mx.symbol.Pooling(data=relu5a, pool_type='max', kernel=(2,2,2), stride=(2,2,2))
## 6th group
fc6 = mx.symbol.FullyConnected(data=pool5b, num_hidden=2048)
relu6 = mx.symbol.Activation(data=fc6, act_type='relu')
drop6 = mx.symbol.Dropout(data=relu6, p=0.5)
fc7 = mx.symbol.FullyConnected(data=drop6, num_hidden=2048)
relu7 = mx.symbol.Activation(data=fc7, act_type='relu')
drop7 = mx.symbol.Dropout(data=relu7, p=0.5)
#Loss
fc8 = mx.symbol.FullyConnected(data=drop7, num_hidden=num_classes)
softmax = mx.symbol.SoftmaxOutput(data=fc8, label=label, name='softmax')
return softmax