-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
80 lines (56 loc) · 1.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
# Keras
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import load_model
from keras.utils import load_img, img_to_array
# importing tensorflow for prediction
import tensorflow as tf
from tensorflow.keras import models, layers
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
MODEL_PATH = 'models/hackmodel.h5'
# Load your trained model
model = load_model(MODEL_PATH)
def model_predict(img_path, model):
class_names=['Grassy Shoots', 'Healthy', 'Mites', 'Ring Spot', 'YLD']
img = Image.open(img_path)
img=img.resize((256,256))
img_array = tf.keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)
predictions = model.predict(img_array)
predicted_class = class_names[np.argmax(predictions[0])]
confidence = round(100 * (np.max(predictions[0])), 2)
return predicted_class, confidence
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
predicted_class, confidence = model_predict(file_path, model)
return predicted_class
return None
if __name__ == '__main__':
app.run(debug=True)