|
| 1 | +package dynamic_programming; |
| 2 | + |
| 3 | +/** |
| 4 | + * @author alis |
| 5 | + * @date 2019/11/17 10:54 PM |
| 6 | + * @description |
| 7 | + */ |
| 8 | +public class LC_64_MinPathSum { |
| 9 | + /** |
| 10 | + * 解法:暴力遍历所有路径的和的解法就不实现了,就算实现出来也是超时; |
| 11 | + * 直接使用DP来实现 |
| 12 | + * 最优dp方程:dp(i,j)=grid(i,j)+min(dp(i+1,j),dp(i,j+1)) |
| 13 | + * dp三部曲: |
| 14 | + * 1. 子问题 |
| 15 | + * 2. 状态定义 |
| 16 | + * 3. DP方程 |
| 17 | + * |
| 18 | + * @param grid 网格 |
| 19 | + * @return |
| 20 | + * @date 2019/11/17 10:55 PM |
| 21 | + */ |
| 22 | + public int minPathSum(int[][] grid) { |
| 23 | + int rows = grid.length; |
| 24 | + int column = grid[0].length; |
| 25 | + if (rows == 0 && column == 0) return 0; |
| 26 | + int[][] dp = new int[rows][column]; |
| 27 | + for (int i = rows - 1; i >= 0; i--) { |
| 28 | + for (int j = column - 1; j >= 0; j--) { |
| 29 | + |
| 30 | + if (i == rows - 1 && j != column - 1) |
| 31 | + // 最后一行排除最后一列的节点([rows-1][column-1]) |
| 32 | + // 最后一行的路径数计算只会从上一步加过来 |
| 33 | + dp[i][j] = grid[i][j] + dp[i][j + 1]; |
| 34 | + else if (j == column - 1 && i != rows - 1) |
| 35 | + // 最后一列排除最后一行的节点[rows-1][column-1] |
| 36 | + // 当前节点计数需要从上一个节点反推 |
| 37 | + dp[i][j] = grid[i][j] + dp[i + 1][j]; |
| 38 | + else if (j != column - 1 && i != rows - 1) |
| 39 | + dp[i][j] = grid[i][j] + Math.min(dp[i + 1][j], dp[i][j + 1]); |
| 40 | + else |
| 41 | + dp[i][j] = grid[i][j]; |
| 42 | + } |
| 43 | + } |
| 44 | + return dp[0][0]; |
| 45 | + } |
| 46 | + |
| 47 | + /** |
| 48 | + * 最小路径和 |
| 49 | + * dp版本思路 |
| 50 | + * 1. 第(i,j)个格子,是从(i-1,j)或者是(i,j-1)走过来,而选择哪条路径,则按照选择路径数最少的那个格子过来,并且计算当前格子的路径和的时候,需要加上自身 |
| 51 | + * 2. 状态转移方程:f(i,j) = grid(i,j) + min(f(i-1,j), f(i,j-1)) |
| 52 | + * 3. 递推初始值,将(i,0)和(0,j)行/列填满,再进行递推过程 |
| 53 | + */ |
| 54 | + public int minPathSum_DP_Review(int[][] grid) { |
| 55 | + int rows = grid.length; |
| 56 | + int column = grid[0].length; |
| 57 | + int[][] dp = new int[rows][column]; |
| 58 | + dp[0][0] = grid[0][0]; |
| 59 | + for (int i = 1; i < rows; i++) { |
| 60 | + dp[i][0] = grid[i][0] + dp[i - 1][0]; |
| 61 | + } |
| 62 | + for (int j = 1; j < column; j++) { |
| 63 | + dp[0][j] = grid[0][j] + dp[0][j - 1]; |
| 64 | + } |
| 65 | + for (int i = 1; i < rows; i++) { |
| 66 | + for (int j = 1; j < column; j++) { |
| 67 | + dp[i][j] = grid[i][j] + Math.min(dp[i - 1][j], dp[i][j - 1]); |
| 68 | + } |
| 69 | + } |
| 70 | + return dp[rows - 1][column - 1]; |
| 71 | + } |
| 72 | +} |
0 commit comments