forked from deepfakes/faceswap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
871 lines (799 loc) · 43 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
#!/usr/bin/env python3
""" Command Line Arguments """
import argparse
import logging
import os
import platform
import sys
from importlib import import_module
from lib.logger import crash_log, log_setup
from lib.utils import safe_shutdown
from plugins.plugin_loader import PluginLoader
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class ScriptExecutor():
""" Loads the relevant script modules and executes the script.
This class is initialised in each of the argparsers for the relevant
command, then execute script is called within their set_default
function. """
def __init__(self, command, subparsers=None):
self.command = command.lower()
self.subparsers = subparsers
def import_script(self):
""" Only import a script's modules when running that script."""
self.test_for_gui()
cmd = os.path.basename(sys.argv[0])
src = "tools" if cmd == "tools.py" else "scripts"
mod = ".".join((src, self.command.lower()))
module = import_module(mod)
script = getattr(module, self.command.title())
return script
def test_for_gui(self):
""" If running the gui, check the prerequisites """
if self.command != "gui":
return
self.test_tkinter()
self.check_display()
@staticmethod
def test_tkinter():
""" If the user is running the GUI, test whether the
tkinter app is available on their machine. If not
exit gracefully.
This avoids having to import every tk function
within the GUI in a wrapper and potentially spamming
traceback errors to console """
try:
# pylint: disable=unused-variable
import tkinter # noqa pylint: disable=unused-import
except ImportError:
logger.warning(
"It looks like TkInter isn't installed for your OS, so "
"the GUI has been disabled. To enable the GUI please "
"install the TkInter application. You can try:")
logger.info("Anaconda: conda install tk")
logger.info("Windows/macOS: Install ActiveTcl Community Edition from "
"http://www.activestate.com")
logger.info("Ubuntu/Mint/Debian: sudo apt install python3-tk")
logger.info("Arch: sudo pacman -S tk")
logger.info("CentOS/Redhat: sudo yum install tkinter")
logger.info("Fedora: sudo dnf install python3-tkinter")
exit(1)
@staticmethod
def check_display():
""" Check whether there is a display to output the GUI. If running on
Windows then assume not running in headless mode """
if not os.environ.get("DISPLAY", None) and os.name != "nt":
logger.warning("No display detected. GUI mode has been disabled.")
if platform.system() == "Darwin":
logger.info("macOS users need to install XQuartz. "
"See https://support.apple.com/en-gb/HT201341")
exit(1)
def execute_script(self, arguments):
""" Run the script for called command """
log_setup(arguments.loglevel, arguments.logfile, self.command)
logger.debug("Executing: %s. PID: %s", self.command, os.getpid())
try:
script = self.import_script()
process = script(arguments)
process.process()
except KeyboardInterrupt: # pylint: disable=try-except-raise
raise
except SystemExit:
pass
except Exception: # pylint: disable=broad-except
crash_file = crash_log()
logger.exception("Got Exception on main handler:")
logger.critical("An unexpected crash has occurred. Crash report written to %s. "
"Please verify you are running the latest version of faceswap "
"before reporting", crash_file)
finally:
safe_shutdown()
class Slider(argparse.Action): # pylint: disable=too-few-public-methods
""" Adds support for the GUI slider
An additional option 'min_max' must be provided containing tuple of min and max accepted
values.
'rounding' sets the decimal places for floats or the step interval for ints.
"""
def __init__(self, option_strings, dest, nargs=None, min_max=None, rounding=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super().__init__(option_strings, dest, **kwargs)
self.min_max = min_max
self.rounding = rounding
def _get_kwargs(self):
names = ["option_strings",
"dest",
"nargs",
"const",
"default",
"type",
"choices",
"help",
"metavar",
"min_max", # Tuple containing min and max values of scale
"rounding"] # Decimal places to round floats to or step interval for ints
return [(name, getattr(self, name)) for name in names]
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, values)
class FullPaths(argparse.Action): # pylint: disable=too-few-public-methods
""" Expand user- and relative-paths """
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, os.path.abspath(
os.path.expanduser(values)))
class DirFullPaths(FullPaths):
""" Class that gui uses to determine if you need to open a directory """
# pylint: disable=too-few-public-methods,unnecessary-pass
pass
class FileFullPaths(FullPaths):
"""
Class that gui uses to determine if you need to open a file.
see lib/gui/utils.py FileHandler for current GUI filetypes
"""
# pylint: disable=too-few-public-methods
def __init__(self, option_strings, dest, nargs=None, filetypes=None, **kwargs):
super(FileFullPaths, self).__init__(option_strings, dest, **kwargs)
if nargs is not None:
raise ValueError("nargs not allowed")
self.filetypes = filetypes
def _get_kwargs(self):
names = ["option_strings",
"dest",
"nargs",
"const",
"default",
"type",
"choices",
"help",
"metavar",
"filetypes"]
return [(name, getattr(self, name)) for name in names]
class DirOrFileFullPaths(FileFullPaths): # pylint: disable=too-few-public-methods
""" Class that the gui uses to determine that the input can take a folder or a filename.
Inherits functionality from FileFullPaths
Has the effect of giving the user 2 Open Dialogue buttons in the gui """
pass
class SaveFileFullPaths(FileFullPaths):
"""
Class that gui uses to determine if you need to save a file.
see lib/gui/utils.py FileHandler for current GUI filetypes
"""
# pylint: disable=too-few-public-methods,unnecessary-pass
pass
class ContextFullPaths(FileFullPaths):
"""
Class that gui uses to determine if you need to open a file or a
directory based on which action you are choosing
To use ContextFullPaths the action_option item should indicate which
cli option dictates the context of the filesystem dialogue
Bespoke actions are then set in lib/gui/utils.py FileHandler
"""
# pylint: disable=too-few-public-methods, too-many-arguments
def __init__(self, option_strings, dest, nargs=None, filetypes=None,
action_option=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super(ContextFullPaths, self).__init__(option_strings, dest,
filetypes=None, **kwargs)
self.action_option = action_option
self.filetypes = filetypes
def _get_kwargs(self):
names = ["option_strings",
"dest",
"nargs",
"const",
"default",
"type",
"choices",
"help",
"metavar",
"filetypes",
"action_option"]
return [(name, getattr(self, name)) for name in names]
class FullHelpArgumentParser(argparse.ArgumentParser):
""" Identical to the built-in argument parser, but on error it
prints full help message instead of just usage information """
def error(self, message):
self.print_help(sys.stderr)
args = {"prog": self.prog, "message": message}
self.exit(2, "%(prog)s: error: %(message)s\n" % args)
class SmartFormatter(argparse.HelpFormatter):
""" Smart formatter for allowing raw formatting in help
text.
To use prefix the help item with "R|" to overide
default formatting
from: https://stackoverflow.com/questions/3853722 """
def _split_lines(self, text, width):
if text.startswith("R|"):
return text[2:].splitlines()
# this is the RawTextHelpFormatter._split_lines
return argparse.HelpFormatter._split_lines(self, text, width)
class FaceSwapArgs():
""" Faceswap argument parser functions that are universal
to all commands. Should be the parent function of all
subsequent argparsers """
def __init__(self, subparser, command,
description="default", subparsers=None):
self.global_arguments = self.get_global_arguments()
self.argument_list = self.get_argument_list()
self.optional_arguments = self.get_optional_arguments()
if not subparser:
return
self.parser = self.create_parser(subparser, command, description)
self.add_arguments()
script = ScriptExecutor(command, subparsers)
self.parser.set_defaults(func=script.execute_script)
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui override for command specific arguments """
argument_list = []
return argument_list
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui. This is used for when there are sub-children
(e.g. convert and extract) Override this for custom arguments """
argument_list = []
return argument_list
@staticmethod
def get_global_arguments():
""" Arguments that are used in ALL parts of Faceswap
DO NOT override this """
global_args = list()
global_args.append({"opts": ("-L", "--loglevel"),
"type": str.upper,
"dest": "loglevel",
"default": "INFO",
"choices": ("INFO", "VERBOSE", "DEBUG", "TRACE"),
"help": "Log level. Stick with INFO or VERBOSE unless you need to "
"file an error report. Be careful with TRACE as it will "
"generate a lot of data"})
global_args.append({"opts": ("-LF", "--logfile"),
"action": FileFullPaths,
"filetypes": 'log',
"type": str,
"dest": "logfile",
"help": "Path to store the logfile. Leave blank to store in the "
"faceswap folder",
"default": None})
# This is a hidden argument to indicate that the GUI is being used,
# so the preview window should be redirected Accordingly
global_args.append({"opts": ("-gui", "--gui"),
"action": "store_true",
"dest": "redirect_gui",
"default": False,
"help": argparse.SUPPRESS})
return global_args
@staticmethod
def create_parser(subparser, command, description):
""" Create the parser for the selected command """
parser = subparser.add_parser(
command,
help=description,
description=description,
epilog="Questions and feedback: \
https://github.com/deepfakes/faceswap-playground",
formatter_class=SmartFormatter)
return parser
def add_arguments(self):
""" Parse the arguments passed in from argparse """
options = self.global_arguments + self.argument_list + self.optional_arguments
for option in options:
args = option["opts"]
kwargs = {key: option[key]
for key in option.keys() if key != "opts"}
self.parser.add_argument(*args, **kwargs)
class ExtractConvertArgs(FaceSwapArgs):
""" This class is used as a parent class to capture arguments that
will be used in both the extract and convert process.
Arguments that can be used in both of these processes should be
placed here, but no further processing should be done. This class
just captures arguments """
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = list()
argument_list.append({"opts": ("-i", "--input-dir"),
"action": DirOrFileFullPaths,
"filetypes": "video",
"dest": "input_dir",
"default": "input",
"help": "Input directory or video. Either a "
"directory containing the image files "
"you wish to process or path to a "
"video file. Defaults to 'input'"})
argument_list.append({"opts": ("-o", "--output-dir"),
"action": DirFullPaths,
"dest": "output_dir",
"default": "output",
"help": "Output directory. This is where the "
"converted files will be stored. "
"Defaults to 'output'"})
argument_list.append({"opts": ("-al", "--alignments"),
"action": FileFullPaths,
"filetypes": 'alignments',
"type": str,
"dest": "alignments_path",
"help": "Optional path to an alignments file."})
argument_list.append({"opts": ("-l", "--ref_threshold"),
"action": Slider,
"min_max": (0.01, 0.99),
"rounding": 2,
"type": float,
"dest": "ref_threshold",
"default": 0.6,
"help": "Threshold for positive face recognition. For use with "
"nfilter or filter. Lower values are stricter."})
argument_list.append({"opts": ("-n", "--nfilter"),
"type": str,
"dest": "nfilter",
"nargs": "+",
"default": None,
"help": "Reference image for the persons you do "
"not want to process. Should be a front "
"portrait. Multiple images can be added "
"space separated"})
argument_list.append({"opts": ("-f", "--filter"),
"type": str,
"dest": "filter",
"nargs": "+",
"default": None,
"help": "Reference images for the person you "
"want to process. Should be a front "
"portrait. Multiple images can be added "
"space separated"})
return argument_list
class ExtractArgs(ExtractConvertArgs):
""" Class to parse the command line arguments for extraction.
Inherits base options from ExtractConvertArgs where arguments
that are used for both extract and convert should be placed """
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = []
argument_list.append({"opts": ("--serializer", ),
"type": str.lower,
"dest": "serializer",
"default": "json",
"choices": ("json", "pickle", "yaml"),
"help": "Serializer for alignments file. If "
"yaml is chosen and not available, then "
"json will be used as the default "
"fallback."})
argument_list.append({
"opts": ("-D", "--detector"),
"type": str.lower,
"choices": PluginLoader.get_available_extractors(
"detect"),
"default": "mtcnn",
"help": "R|Detector to use."
"\n'dlib-hog': uses least resources, but is the"
"\n\tleast reliable."
"\n'dlib-cnn': faster than mtcnn but detects"
"\n\tfewer faces and fewer false positives."
"\n'mtcnn': slower than dlib, but uses fewer"
"\n\tresources whilst detecting more faces and"
"\n\tmore false positives. Has superior"
"\n\talignment to dlib"})
argument_list.append({
"opts": ("-A", "--aligner"),
"type": str.lower,
"choices": PluginLoader.get_available_extractors(
"align"),
"default": "fan",
"help": "R|Aligner to use."
"\n'dlib': Dlib Pose Predictor. Faster, less "
"\n\tresource intensive, but less accurate."
"\n'fan': Face Alignment Network. Best aligner."
"\n\tGPU heavy."})
argument_list.append({"opts": ("-r", "--rotate-images"),
"type": str,
"dest": "rotate_images",
"default": None,
"help": "If a face isn't found, rotate the "
"images to try to find a face. Can find "
"more faces at the cost of extraction "
"speed. Pass in a single number to use "
"increments of that size up to 360, or "
"pass in a list of numbers to enumerate "
"exactly what angles to check"})
argument_list.append({"opts": ("-bt", "--blur-threshold"),
"type": float,
"action": Slider,
"min_max": (0.0, 100.0),
"rounding": 1,
"dest": "blur_thresh",
"default": 0.0,
"help": "Automatically discard images blurrier than the specified "
"threshold. Discarded images are moved into a \"blurry\" "
"sub-folder. Lower values allow more blur. Set to 0.0 to "
"turn off."})
argument_list.append({"opts": ("-mp", "--multiprocess"),
"action": "store_true",
"default": False,
"help": "Run extraction in parallel. Offers "
"speed up for some extractor/detector "
"combinations, less so for others. "
"Only has an effect if both the "
"aligner and detector use the GPU, "
"otherwise this is automatic."})
argument_list.append({"opts": ("-sz", "--size"),
"type": int,
"action": Slider,
"min_max": (128, 512),
"default": 256,
"rounding": 64,
"help": "The output size of extracted faces. Make sure that the "
"model you intend to train supports your required size. "
"This will only need to be changed for hi-res models."})
argument_list.append({"opts": ("-s", "--skip-existing"),
"action": "store_true",
"dest": "skip_existing",
"default": False,
"help": "Skips frames that have already been "
"extracted and exist in the alignments "
"file"})
argument_list.append({"opts": ("-sf", "--skip-existing-faces"),
"action": "store_true",
"dest": "skip_faces",
"default": False,
"help": "Skip frames that already have "
"detected faces in the alignments "
"file"})
argument_list.append({"opts": ("-dl", "--debug-landmarks"),
"action": "store_true",
"dest": "debug_landmarks",
"default": False,
"help": "Draw landmarks on the ouput faces for "
"debug"})
argument_list.append({"opts": ("-ae", "--align-eyes"),
"action": "store_true",
"dest": "align_eyes",
"default": False,
"help": "Perform extra alignment to ensure "
"left/right eyes are at the same "
"height"})
argument_list.append({"opts": ("-si", "--save-interval"),
"dest": "save_interval",
"type": int,
"action": Slider,
"min_max": (0, 1000),
"rounding": 10,
"default": 0,
"help": "Automatically save the alignments file after a set amount "
"of frames. Will only save at the end of extracting by "
"default. WARNING: Don't interrupt the script when writing "
"the file because it might get corrupted. Set to 0 to turn "
"off"})
return argument_list
class ConvertArgs(ExtractConvertArgs):
""" Class to parse the command line arguments for conversion.
Inherits base options from ExtractConvertArgs where arguments
that are used for both extract and convert should be placed """
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = []
argument_list.append({"opts": ("-m", "--model-dir"),
"action": DirFullPaths,
"dest": "model_dir",
"default": "models",
"help": "Model directory. A directory "
"containing the trained model you wish "
"to process. Defaults to 'models'"})
argument_list.append({"opts": ("-a", "--input-aligned-dir"),
"action": DirFullPaths,
"dest": "input_aligned_dir",
"default": None,
"help": "Input \"aligned directory\". A "
"directory that should contain the "
"aligned faces extracted from the input "
"files. If you delete faces from this "
"folder, they'll be skipped during "
"conversion. If no aligned dir is "
"specified, all faces will be "
"converted"})
argument_list.append({"opts": ("-t", "--trainer"),
"type": str.lower,
"choices": PluginLoader.get_available_models(),
"default": PluginLoader.get_default_model(),
"help": "Select the trainer that was used to "
"create the model"})
argument_list.append({"opts": ("-c", "--converter"),
"type": str.lower,
"choices": PluginLoader.get_available_converters(),
"default": "masked",
"help": "Converter to use"})
argument_list.append({
"opts": ("-M", "--mask-type"),
"type": str.lower,
"dest": "mask_type",
"choices": ["ellipse",
"facehull",
"dfl",
# "cnn", Removed until implemented
"none"],
"default": "facehull_rect",
"help": "R|Mask to use to replace faces."
"\nellipse: Oval around face."
"\nfacehull: Face cutout based on landmarks."
"\ndfl: A Face Hull mask from DeepFaceLabs."
# "\ncnn: Not yet implemented" Removed until implemented
"\nnone: No mask. Can still use blur and erode on the edges of the swap box."})
argument_list.append({"opts": ("-b", "--blur-size"),
"type": float,
"action": Slider,
"min_max": (0.0, 100.0),
"rounding": 2,
"default": 5.0,
"help": "Blur kernel size as a percentage of the swap area. Smooths "
"the transition between the swapped face and the background "
"image."})
argument_list.append({"opts": ("-e", "--erosion-size"),
"dest": "erosion_size",
"type": float,
"action": Slider,
"min_max": (-100.0, 100.0),
"rounding": 2,
"default": 0.0,
"help": "Erosion kernel size as a percentage of the mask radius "
"area. Positive values apply erosion which reduces the size "
"of the swapped area. Negative values apply dilation which "
"increases the swapped area"})
argument_list.append({"opts": ("-g", "--gpus"),
"type": int,
"action": Slider,
"min_max": (1, 10),
"rounding": 1,
"default": 1,
"help": "Number of GPUs to use for conversion"})
argument_list.append({"opts": ("-sh", "--sharpen"),
"type": str.lower,
"dest": "sharpen_image",
"choices": ["box_filter", "gaussian_filter", "none"],
"default": "none",
"help": "Sharpen the masked facial region of "
"the converted images. Choice of filter "
"to use in sharpening process -- box"
"filter or gaussian filter."})
argument_list.append({"opts": ("-fr", "--frame-ranges"),
"nargs": "+",
"type": str,
"help": "frame ranges to apply transfer to e.g. "
"For frames 10 to 50 and 90 to 100 use "
"--frame-ranges 10-50 90-100. Files "
"must have the frame-number as the last "
"number in the name!"})
argument_list.append({"opts": ("-d", "--discard-frames"),
"action": "store_true",
"dest": "discard_frames",
"default": False,
"help": "When used with --frame-ranges discards "
"frames that are not processed instead "
"of writing them out unchanged"})
argument_list.append({"opts": ("-s", "--swap-model"),
"action": "store_true",
"dest": "swap_model",
"default": False,
"help": "Swap the model. Instead of A -> B, "
"swap B -> A"})
argument_list.append({"opts": ("-S", "--seamless"),
"action": "store_true",
"dest": "seamless_clone",
"default": False,
"help": "Use cv2's seamless clone function to "
"remove extreme gradients at the mask "
"seam by smoothing colors."})
argument_list.append({"opts": ("-mh", "--match-histogram"),
"action": "store_true",
"dest": "match_histogram",
"default": False,
"help": "Adjust the histogram of each color "
"channel in the swapped reconstruction "
"to equal the histogram of the masked "
"area in the orginal image"})
argument_list.append({"opts": ("-aca", "--avg-color-adjust"),
"action": "store_true",
"dest": "avg_color_adjust",
"default": False,
"help": "Adjust the mean of each color channel "
" in the swapped reconstruction to "
"equal the mean of the masked area in "
"the orginal image"})
argument_list.append({"opts": ("-sb", "--smooth-box"),
"action": "store_true",
"dest": "smooth_box",
"default": False,
"help": "Perform a Gaussian blur on the edges of the face box "
"received from the model. Helps reduce pronounced edges "
"of the swap area"})
argument_list.append({"opts": ("-dt", "--draw-transparent"),
"action": "store_true",
"dest": "draw_transparent",
"default": False,
"help": "Place the swapped face on a "
"transparent layer rather than the "
"original frame."})
return argument_list
class TrainArgs(FaceSwapArgs):
""" Class to parse the command line arguments for training """
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = list()
argument_list.append({"opts": ("-A", "--input-A"),
"action": DirFullPaths,
"dest": "input_a",
"default": "input_a",
"help": "Input directory. A directory "
"containing training images for face A. "
"Defaults to 'input'"})
argument_list.append({"opts": ("-B", "--input-B"),
"action": DirFullPaths,
"dest": "input_b",
"default": "input_b",
"help": "Input directory. A directory "
"containing training images for face B. "
"Defaults to 'input'"})
argument_list.append({"opts": ("-ala", "--alignments-A"),
"action": FileFullPaths,
"filetypes": 'alignments',
"type": str,
"dest": "alignments_path_a",
"default": None,
"help": "Path to alignments file for training set A. Only required "
"if you are using a masked model or warp-to-landmarks is "
"enabled. Defaults to <input-A>/alignments.json if not "
"provided."})
argument_list.append({"opts": ("-alb", "--alignments-B"),
"action": FileFullPaths,
"filetypes": 'alignments',
"type": str,
"dest": "alignments_path_b",
"default": None,
"help": "Path to alignments file for training set B. Only required "
"if you are using a masked model or warp-to-landmarks is "
"enabled. Defaults to <input-B>/alignments.json if not "
"provided."})
argument_list.append({"opts": ("-m", "--model-dir"),
"action": DirFullPaths,
"dest": "model_dir",
"default": "models",
"help": "Model directory. This is where the "
"training data will be stored. "
"Defaults to 'model'"})
argument_list.append({"opts": ("-t", "--trainer"),
"type": str.lower,
"choices": PluginLoader.get_available_models(),
"default": PluginLoader.get_default_model(),
"help": "Select which trainer to use, Use "
"LowMem for cards with less than 2GB of "
"VRAM"})
argument_list.append({"opts": ("-s", "--save-interval"),
"type": int,
"action": Slider,
"min_max": (10, 1000),
"rounding": 10,
"dest": "save_interval",
"default": 100,
"help": "Sets the number of iterations before saving the model"})
argument_list.append({"opts": ("-bs", "--batch-size"),
"type": int,
"action": Slider,
"min_max": (2, 256),
"rounding": 2,
"dest": "batch_size",
"default": 64,
"help": "Batch size, as a power of 2 (64, 128, 256, etc)"})
argument_list.append({"opts": ("-it", "--iterations"),
"type": int,
"action": Slider,
"min_max": (0, 5000000),
"rounding": 20000,
"default": 1000000,
"help": "Length of training in iterations."})
argument_list.append({"opts": ("-g", "--gpus"),
"type": int,
"action": Slider,
"min_max": (1, 10),
"rounding": 1,
"default": 1,
"help": "Number of GPUs to use for training"})
argument_list.append({"opts": ("-ps", "--preview-scale"),
"type": int,
"action": Slider,
"dest": "preview_scale",
"min_max": (25, 200),
"rounding": 25,
"default": 100,
"help": "Percentage amount to scale the preview by."})
argument_list.append({"opts": ("-p", "--preview"),
"action": "store_true",
"dest": "preview",
"default": False,
"help": "Show preview output. If not specified, "
"write progress to file"})
argument_list.append({"opts": ("-w", "--write-image"),
"action": "store_true",
"dest": "write_image",
"default": False,
"help": "Writes the training result to a file "
"even on preview mode"})
argument_list.append({"opts": ("-ag", "--allow-growth"),
"action": "store_true",
"dest": "allow_growth",
"default": False,
"help": "Sets allow_growth option of Tensorflow "
"to spare memory on some configs"})
argument_list.append({"opts": ("-nl", "--no-logs"),
"action": "store_true",
"dest": "no_logs",
"default": False,
"help": "Disables TensorBoard logging. NB: Disabling logs means "
"that you will not be able to use the graph or analysis "
"for this session in the GUI."})
argument_list.append({"opts": ("-wl", "--warp-to-landmarks"),
"action": "store_true",
"dest": "warp_to_landmarks",
"default": False,
"help": "Warps training faces to closely matched Landmarks from the "
"opposite face-set rather than randomly warping the face. "
"This is the 'dfaker' way of doing warping. Alignments "
"files for both sets of faces must be provided if using "
"this option."})
argument_list.append({"opts": ("-nf", "--no-flip"),
"action": "store_true",
"dest": "no_flip",
"default": False,
"help": "To effectively learn, a random set of images are flipped "
"horizontally. Sometimes it is desirable for this not to "
"occur. Generally this should be left off except for "
"during 'fit training'."})
argument_list.append({"opts": ("-tia", "--timelapse-input-A"),
"action": DirFullPaths,
"dest": "timelapse_input_a",
"default": None,
"help": "For if you want a timelapse: "
"The input folder for the timelapse. "
"This folder should contain faces of A "
"which will be converted for the "
"timelapse. You must supply a "
"--timelapse-output and a "
"--timelapse-input-B parameter."})
argument_list.append({"opts": ("-tib", "--timelapse-input-B"),
"action": DirFullPaths,
"dest": "timelapse_input_b",
"default": None,
"help": "For if you want a timelapse: "
"The input folder for the timelapse. "
"This folder should contain faces of B "
"which will be converted for the "
"timelapse. You must supply a "
"--timelapse-output and a "
"--timelapse-input-A parameter."})
argument_list.append({"opts": ("-to", "--timelapse-output"),
"action": DirFullPaths,
"dest": "timelapse_output",
"default": None,
"help": "The output folder for the timelapse. "
"If the input folders are supplied but "
"no output folder, it will default to "
"your model folder /timelapse/"})
return argument_list
class GuiArgs(FaceSwapArgs):
""" Class to parse the command line arguments for training """
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = []
argument_list.append({"opts": ("-d", "--debug"),
"action": "store_true",
"dest": "debug",
"default": False,
"help": "Output to Shell console instead of "
"GUI console"})
return argument_list