From 9696086df53ea75168314b3936f5d1665f38cbc3 Mon Sep 17 00:00:00 2001 From: Jan Bender Date: Fri, 12 Jan 2024 08:35:35 +0100 Subject: [PATCH] - updated README.md --- README.md | 75 ------------------------------------------------------- 1 file changed, 75 deletions(-) diff --git a/README.md b/README.md index 0ad12133..0e7c6d9d 100644 --- a/README.md +++ b/README.md @@ -118,78 +118,3 @@ To cite SPlisHSPlasH you can use this BibTeX entry: url = {https://github.com/InteractiveComputerGraphics/SPlisHSPlasH}, } ``` - -## References - -* Nadir Akinci, Gizem Akinci, and Matthias Teschner. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph., 32(6):182:1–182:8, 2013. -* Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner, "Versatile rigid-fluid coupling for incompressible SPH", ACM Transactions on Graphics 31(4), 2012 -* Markus Becker and Matthias Teschner. Weakly compressible SPH for free surface flows. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2007. Eurographics Association. -* M. Becker, M. Ihmsen, and M. Teschner. Corotated SPH for deformable solids. Proceedings of Eurographics Conference on Natural Phenomena, 2009 -* Jan Bender and Dan Koschier. Divergence-free smoothed particle hydrodynamics. In Proceedings of ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2015. ACM. -* Jan Bender and Dan Koschier. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics, 2017. -* Jan Bender, Dan Koschier, Tassilo Kugelstadt and Marcel Weiler. A Micropolar Material Model for Turbulent SPH Fluids. In Proceedings of ACM SIGGRAPH / EUROGRAPHICS Symposium on Computer Animation, 2017 -* Jan Bender, Dan Koschier, Tassilo Kugelstadt and Marcel Weiler. Turbulent Micropolar SPH Fluids with Foam. IEEE Transactions on Visualization and Computer Graphics 25(6), 2019 -* Jan Bender, Tassilo Kugelstadt, Marcel Weiler, Dan Koschier, "Volume Maps: An Implicit Boundary Representation for SPH", ACM SIGGRAPH Conference on Motion, Interaction and Games, 2019 -* Jan Bender, Tassilo Kugelstadt, Marcel Weiler, Dan Koschier, "Implicit Frictional Boundary Handling for SPH", IEEE Transactions on Visualization and Computer Graphics, 2020 -* Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles Macklin. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 33(6):228–251, 2014. -* Jan Bender, Matthias Müller, and Miles Macklin. Position-based simulation methods in computer graphics. In EUROGRAPHICS 2015 Tutorials. Eurographics Association, 2015. -* Christoph Gissler, Stefan Band, Andreas Peer, Markus Ihmsen and Matthias Teschner. Approximate Air-Fluid Interactions for SPH. In Proceedings of Virtual Reality Interactions and Physical Simulations, 2017 -* C. Gissler, A. Henne, S. Band, A. Peer and M. Teschner. An Implicit Compressible SPH Solver for Snow Simulation, ACM Transactions on Graphics 39(4), 2020. -* Xiaowei He, Huamin Wang, Fengjun Zhang, Hongan Wang, Guoping Wang, and Kun Zhou. Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Trans. Graph., 34(1):7:1–7:9, December 2014. -* Markus Ihmsen, Nadir Akinci, Gizem Akinci, Matthias Teschner. Unified spray, foam and air bubbles for particle-based fluids. The Visual Computer 28(6), 2012 -* Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics, 20(3):426–435, March 2014. -* Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. SPH Fluids in Computer Graphics. In Eurographics 2014 - State of the Art Reports. The Eurographics Association, 2014. -* M. Jiang, Y. Zhou, R. Wang, R. Southern, J. J. Zhang. Blue noise sampling using an SPH-based method. ACM Transactions on Graphics, 2015 -* Dan Koschier and Jan Bender, "Density Maps for Improved SPH Boundary Handling", In Proceedings of ACM SIGGRAPH / EUROGRAPHICS Symposium on Computer Animation (SCA), 2017 -* Tassilo Kugelstadt, Jan Bender, José Antonio Fernández-Fernández, Stefan Rhys Jeske, Fabian Löschner, and Andreas Longva. Fast Corotated Elastic SPH Solids with Implicit Zero-Energy Mode Control. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2021 -* Miles Macklin and Matthias Müller. Position based fluids. ACM Trans. Graph., 32(4):104:1–104:12, July 2013. -* Miles Macklin, Matthias Müller, Nuttapong Chentanez and Tae-Yong Kim. Unified Particle Physics for Real-Time Applications. ACM Trans. Graph., 33(4), 2014 -* J. J. Monaghan. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, 30, 543-574. -* A. Peer, C. Gissler, S. Band, and M. Teschner. An Implicit SPH Formulation for Incompressible Linearly Elastic Solids. Computer Graphics Forum, 2017 -* Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. An Implicit Viscosity Formulation for SPH Fluids. ACM Trans. Graph., 34(4), 2015. -* Andreas Peer and Matthias Teschner. Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion. IEEE Transactions on Visualization and Computer Graphics, 2016. -* B. Solenthaler and R. Pajarola. Density Contrast SPH Interfaces. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2008. -* B. Solenthaler and R. Pajarola. Predictive-corrective incompressible SPH. ACM Trans. Graph., 28(3):40:1–40:6, July 2009. -* Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki Nishita, and Ming C. Lin. Implicit Formulation for SPH-based Viscous Fluids. Computer Graphics Forum, 34, 2015. -* Marcel Weiler, Dan Koschier and Jan Bender. Projective Fluids. Proceedings of the 9th International Conference on Motion in Games, ACM, 2016, 79-84 -* Marcel Weiler, Dan Koschier, Magnus Brand and Jan Bender. A Physically Consistent Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum (Eurographics), 37(2), 2018 -* F. Zorilla, M. Ritter, J. Sappl, W. Rauch, M. Harders. Accelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integration. Computers 9, 23, 2020. - - -## Other research projects using SPlisHSPlasH - -* Diogo Schaffer, Andre Antonitsch, Amyr Neto, Soraia Musse. Towards Animating Virtual Humans in Flooded Environments. Motion, Interaction and Games, 2020 -https://dl.acm.org/doi/10.1145/3424636.3426900 -* Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, Barbara Solenthaler. Lagrangian neural style transfer for fluids. ACM Transactions on Graphics 39, 4, 2020 -https://dl.acm.org/doi/abs/10.1145/3386569.3392473 -* Fernando Zorilla, Marcel Ritter, Johannes Sappl, Wolfgang Rauch, Matthias Harders. Accelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integration. Computer Graphics and Visual Computing (CGVC), 2019 -https://diglib.eg.org/handle/10.2312/cgvc20191260 -* H. R. Abbasia and R. Lubbad. A numerical model for the simulation of oil–ice interaction. Physics of Fluids 33, 2021 -https://aip.scitation.org/doi/10.1063/5.0065587 -* Uljad Berdica, Yuewei Fu, Yuchen Liu, Emmanouil Angelidis, Chen Feng. Mobile 3D Printing Robot Simulation with Viscoelastic Fluids. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021 -https://ieeexplore.ieee.org/document/9636114 -* Arnaud Schoentgen, Pierre Poulin, Emmanuelle Darles, Philippe Meseure. Particle-based liquid control using animation templates. ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2020 -https://dl.acm.org/doi/10.1111/cgf.14103 -* B. Ummenhofer, L. Prantl, N. Thuerey, V. Koltun. Lagrangian Fluid Simulation with Continuous Convolutions. ICLR 2020 -https://ge.in.tum.de/publications/2020-ummenhofer-iclr/ -* Stefan Reinhardt, Tim Krake, Bernhard Eberhardt, Daniel Weiskopf. Consistent Shepard Interpolation for SPH-Based Fluid Animation. ACM Transactions on Graphics 38, 6, 2019 -https://dl.acm.org/doi/10.1145/3355089.3356503 -* Zhongyao Yang, Maolin Wu, Shiguang Liu. Helmholtz decomposition-based SPH. Virtual Reality & Intelligent Hardware 3, 2, 2021 -https://www.sciencedirect.com/science/article/pii/S2096579621000176 -* Min Li, Hongshu Li, Weiliang Meng, Jian Zhu, Gary Zhang. An efficient non-iterative smoothed particle hydrodynamics fluid simulation method with variable smoothing length. Visual Computing for Industry, Biomedicine, and Art 6, 1, 2023 -https://vciba.springeropen.com/articles/10.1186/s42492-022-00128-x -* Yalmar Ponce Atencio, Manuel J. Ibarra, Juan José Oré Cerrón, Roberto Quispe Quispe, Richard Flores Condori, Julio Huanca Marín, Mary Huaman Carrión. Particle-Based Physics for Interactive Applications. Lecture Notes in Networks and Systems book series (LNNS,volume 216), 2021 -https://link.springer.com/chapter/10.1007/978-981-16-1781-2_38 -* Zijie Li, Tianqin Li, Amir Barati Farimani. TPU-GAN: Learning temporal coherence from dynamic point cloud sequences. ICLR 2022 -https://openreview.net/forum?id=FEBFJ98FKx -* Muzaffer Akbay, Nicholas Nobles, Victor Zordan, Tamar Shinar. An extended partitioned method for conservative solid-fluid coupling. ACM Transactions on Graphics 37, 4, 2018 -https://dl.acm.org/doi/10.1145/3197517.3201345 -* Samuel Carensac, Nicolas Pronost & Saïda Bouakaz. Optimizations for predictive–corrective particle-based fluid simulation on GPU. The Visual Computer volume 39, 2023 -* Iliya Starodubtsev, Pavel Vasev, Yuliya Starodubtseva, Igor Tsepelev. Numerical Simulation and Visualization of Lava Flows. Scientific Visualization, 2022, volume 14, number 5 -https://doi.org/10.26583/sv.14.5.05 -* Arjun Mani, Ishaan Preetam Chandratreya, Elliot Creager, Carl Vondrick, Richard Zemel. SurfsUp: Learning Fluid Simulation for Novel Surfaces. arXiv 2023 -https://doi.org/10.48550/arXiv.2304.06197 -* Jian Chen. Incompressible Projective Smooth Particle Hydrodynamic. Proc. CNCI 2019 -https://doi.org/10.2991/cnci-19.2019.80 -* Min Hyung Kee, Kiwon Um, HyunMo Kang, and JungHyun Han. An Optimization-based SPH Solver for Simulation of Hyperelastic Solids. Computer Graphics Forum, 42, 2, 2023 -https://doi.org/10.1111/cgf.14756 \ No newline at end of file