Skip to content

Docs for random #204

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 25, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion docs/dppy/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,9 @@ Numba for DPPY GPUs
writing_kernels.rst
memory-management.rst
device-functions.rst
atomic-operations.rst
python-support-features.rst
atomic-operations.rst
random.rst
debugging.md
reduction.rst
ufunc.rst
51 changes: 51 additions & 0 deletions docs/dppy/random.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
Random Number Generation
========================

DPPY does not provides a random number generation algorithm that can be executed
on the GPU.

DPPY provides access to NumPy random algorithms that can be executed on the GPU
via integration with `dpNP Random`_.

.. _`dpNP Random`: https://intelpython.github.io/dpnp/reference/comparison.html#random-sampling


DPPY supported functions
------------------------

Simple random
`````````````

- `random <https://numpy.org/doc/1.16/reference/generated/numpy.random.random.html#numpy.random.random>`_
- `sample <https://numpy.org/doc/1.16/reference/generated/numpy.random.sample.html#numpy.random.sample>`_
- `ranf <https://numpy.org/doc/1.16/reference/generated/numpy.random.ranf.html#numpy.random.ranf>`_
- `random_sample <https://numpy.org/doc/1.16/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample>`_
- `rand <https://numpy.org/doc/1.16/reference/generated/numpy.random.rand.html#numpy.random.rand>`_
- `randint <https://numpy.org/doc/1.16/reference/generated/numpy.random.randint.html#numpy.random.randint>`_
- `random_integers <https://numpy.org/doc/1.16/reference/generated/numpy.random.random_integers.html#numpy.random.random_integers>`_

Distribution
````````````

- `beta <https://numpy.org/doc/1.16/reference/generated/numpy.random.beta.html#numpy.random.beta>`_
- `binomial <https://numpy.org/doc/1.16/reference/generated/numpy.random.binomial.html#numpy.random.binomial>`_
- `chisquare <https://numpy.org/doc/1.16/reference/generated/numpy.random.chisquare.html#numpy.random.chisquare>`_
- `exponential <https://numpy.org/doc/1.16/reference/generated/numpy.random.exponential.html#numpy.random.exponential>`_
- `gamma <https://numpy.org/doc/1.16/reference/generated/numpy.random.gamma.html#numpy.random.gamma>`_
- `geometric <https://numpy.org/doc/1.16/reference/generated/numpy.random.geometric.html#numpy.random.geometric>`_
- `gumbel <https://numpy.org/doc/1.16/reference/generated/numpy.random.gumbel.html#numpy.random.gumbel>`_
- `hypergeometric <https://numpy.org/doc/1.16/reference/generated/numpy.random.hypergeometric.html#numpy.random.hypergeometric>`_
- `laplace <https://numpy.org/doc/1.16/reference/generated/numpy.random.laplace.html#numpy.random.laplace>`_
- `lognormal <https://numpy.org/doc/1.16/reference/generated/numpy.random.lognormal.html#numpy.random.lognormal>`_
- `multinomial <https://numpy.org/doc/1.16/reference/generated/numpy.random.multinomial.html#numpy.random.multinomial>`_
- `multivariate_normal <https://numpy.org/doc/1.16/reference/generated/numpy.random.multivariate_normal.html#numpy.random.multivariate_normal>`_
- `negative_binomial <https://numpy.org/doc/1.16/reference/generated/numpy.random.negative_binomial.html#numpy.random.negative_binomial>`_
- `normal <https://numpy.org/doc/1.16/reference/generated/numpy.random.normal.html#numpy.random.normal>`_
- `poisson <https://numpy.org/doc/1.16/reference/generated/numpy.random.poisson.html#numpy.random.poisson>`_
- `rayleigh <https://numpy.org/doc/1.16/reference/generated/numpy.random.rayleigh.html#numpy.random.rayleigh>`_
- `standard_cauchy <https://numpy.org/doc/1.16/reference/generated/numpy.random.standard_cauchy.html#numpy.random.standard_cauchy>`_
- `standard_exponential <https://numpy.org/doc/1.16/reference/generated/numpy.random.standard_exponential.html#numpy.random.standard_exponential>`_
- `standard_gamma <https://numpy.org/doc/1.16/reference/generated/numpy.random.standard_gamma.html#numpy.random.standard_gamma>`_
- `standard_normal <https://numpy.org/doc/1.16/reference/generated/numpy.random.standard_normal.html#numpy.random.standard_normal>`_
- `uniform <https://numpy.org/doc/1.16/reference/generated/numpy.random.uniform.html#numpy.random.uniform>`_
- `weibull <https://numpy.org/doc/1.16/reference/generated/numpy.random.weibull.html#numpy.random.weibull>`_