Skip to content

Implementation of expm1, log, and log1p #1218

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions dpctl/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,9 +97,12 @@
cos,
divide,
equal,
expm1,
isfinite,
isinf,
isnan,
log,
log1p,
multiply,
sqrt,
subtract,
Expand Down Expand Up @@ -184,9 +187,12 @@
"abs",
"add",
"cos",
"expm1",
"isinf",
"isnan",
"isfinite",
"log",
"log1p",
"sqrt",
"divide",
"multiply",
Expand Down
61 changes: 58 additions & 3 deletions dpctl/tensor/_elementwise_funcs.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,26 @@
# FIXME: implement U13

# U14: ==== EXPM1 (x)
# FIXME: implement U14
_expm1_docstring = """
expm1(x, out=None, order='K')
Computes an approximation of exp(x)-1 element-wise.
Args:
x (usm_ndarray):
Input array, expected to have numeric data type.
out (usm_ndarray):
Output array to populate. Array must have the correct
shape and the expected data type.
order ("C","F","A","K", optional): memory layout of the new
output array, if parameter `out` is `None`.
Default: "K".
Return:
usm_ndarray:
An array containing the element-wise exp(x)-1 values.
"""

expm1 = UnaryElementwiseFunc(
"expm1", ti._expm1_result_type, ti._expm1, _expm1_docstring
)

# U15: ==== FLOOR (x)
# FIXME: implement U15
Expand Down Expand Up @@ -210,10 +229,46 @@
# FIXME: implement B14

# U20: ==== LOG (x)
# FIXME: implement U20
_log_docstring = """
log(x, out=None, order='K')
Computes the natural logarithm element-wise.
Args:
x (usm_ndarray):
Input array, expected to have numeric data type.
out (usm_ndarray):
Output array to populate. Array must have the correct
shape and the expected data type.
order ("C","F","A","K", optional): memory layout of the new
output array, if parameter `out` is `None`.
Default: "K".
Return:
usm_ndarray:
An array containing the element-wise natural logarithm values.
"""

log = UnaryElementwiseFunc("log", ti._log_result_type, ti._log, _log_docstring)

# U21: ==== LOG1P (x)
# FIXME: implement U21
_log1p_docstring = """
log1p(x, out=None, order='K')
Computes an approximation of log(1+x) element-wise.
Args:
x (usm_ndarray):
Input array, expected to have numeric data type.
out (usm_ndarray):
Output array to populate. Array must have the correct
shape and the expected data type.
order ("C","F","A","K", optional): memory layout of the new
output array, if parameter `out` is `None`.
Default: "K".
Return:
usm_ndarray:
An array containing the element-wise log(1+x) values.
"""

log1p = UnaryElementwiseFunc(
"log1p", ti._log1p_result_type, ti._log1p, _log1p_docstring
)

# U22: ==== LOG2 (x)
# FIXME: implement U22
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,257 @@
//=== expm1.hpp - Unary function EXPM1 ------
//*-C++-*--/===//
//
// Data Parallel Control (dpctl)
//
// Copyright 2020-2023 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//===---------------------------------------------------------------------===//
///
/// \file
/// This file defines kernels for elementwise evaluation of EXPM1(x) function.
//===---------------------------------------------------------------------===//

#pragma once
#include <CL/sycl.hpp>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <type_traits>

#include "kernels/elementwise_functions/common.hpp"

#include "utils/offset_utils.hpp"
#include "utils/type_dispatch.hpp"
#include "utils/type_utils.hpp"
#include <pybind11/pybind11.h>

namespace dpctl
{
namespace tensor
{
namespace kernels
{
namespace expm1
{

namespace py = pybind11;
namespace td_ns = dpctl::tensor::type_dispatch;

using dpctl::tensor::type_utils::is_complex;

template <typename argT, typename resT> struct Expm1Functor
{

// is function constant for given argT
using is_constant = typename std::false_type;
// constant value, if constant
// constexpr resT constant_value = resT{};
// is function defined for sycl::vec
using supports_vec = typename std::false_type;
// do both argTy and resTy support sugroup store/load operation
using supports_sg_loadstore = typename std::negation<
std::disjunction<is_complex<resT>, is_complex<argT>>>;

resT operator()(const argT &in)
{
if constexpr (is_complex<argT>::value) {
using realT = typename argT::value_type;
// expm1(x + I*y) = expm1(x)*cos(y) - 2*sin(y / 2)^2 +
// I*exp(x)*sin(y)
const realT x = std::real(in);
const realT y = std::imag(in);

realT cosY_val;
const realT sinY_val = sycl::sincos(y, &cosY_val);
const realT sinhalfY_val = std::sin(y / 2);

const realT res_re =
std::expm1(x) * cosY_val - 2 * sinhalfY_val * sinhalfY_val;
const realT res_im = std::exp(x) * sinY_val;
return resT{res_re, res_im};
}
else {
static_assert(std::is_floating_point_v<argT> ||
std::is_same_v<argT, sycl::half>);
return std::expm1(in);
}
}
};

template <typename argTy,
typename resTy = argTy,
unsigned int vec_sz = 4,
unsigned int n_vecs = 2>
using Expm1ContigFunctor =
elementwise_common::UnaryContigFunctor<argTy,
resTy,
Expm1Functor<argTy, resTy>,
vec_sz,
n_vecs>;

template <typename argTy, typename resTy, typename IndexerT>
using Expm1StridedFunctor = elementwise_common::
UnaryStridedFunctor<argTy, resTy, IndexerT, Expm1Functor<argTy, resTy>>;

template <typename T> struct Expm1OutputType
{
using value_type = typename std::disjunction< // disjunction is C++17
// feature, supported by DPC++
td_ns::TypeMapResultEntry<T, sycl::half, sycl::half>,
td_ns::TypeMapResultEntry<T, float, float>,
td_ns::TypeMapResultEntry<T, double, double>,
td_ns::TypeMapResultEntry<T, std::complex<float>, std::complex<float>>,
td_ns::
TypeMapResultEntry<T, std::complex<double>, std::complex<double>>,
td_ns::DefaultResultEntry<void>>::result_type;
};

typedef sycl::event (*expm1_contig_impl_fn_ptr_t)(
sycl::queue,
size_t,
const char *,
char *,
const std::vector<sycl::event> &);

template <typename T1, typename T2, unsigned int vec_sz, unsigned int n_vecs>
class expm1_contig_kernel;

template <typename argTy>
sycl::event expm1_contig_impl(sycl::queue exec_q,
size_t nelems,
const char *arg_p,
char *res_p,
const std::vector<sycl::event> &depends = {})
{
sycl::event expm1_ev = exec_q.submit([&](sycl::handler &cgh) {
cgh.depends_on(depends);
constexpr size_t lws = 64;
constexpr unsigned int vec_sz = 4;
constexpr unsigned int n_vecs = 2;
static_assert(lws % vec_sz == 0);
auto gws_range = sycl::range<1>(
((nelems + n_vecs * lws * vec_sz - 1) / (lws * n_vecs * vec_sz)) *
lws);
auto lws_range = sycl::range<1>(lws);

using resTy = typename Expm1OutputType<argTy>::value_type;
const argTy *arg_tp = reinterpret_cast<const argTy *>(arg_p);
resTy *res_tp = reinterpret_cast<resTy *>(res_p);

cgh.parallel_for<
class expm1_contig_kernel<argTy, resTy, vec_sz, n_vecs>>(
sycl::nd_range<1>(gws_range, lws_range),
Expm1ContigFunctor<argTy, resTy, vec_sz, n_vecs>(arg_tp, res_tp,
nelems));
});
return expm1_ev;
}

template <typename fnT, typename T> struct Expm1ContigFactory
{
fnT get()
{
if constexpr (std::is_same_v<typename Expm1OutputType<T>::value_type,
void>) {
fnT fn = nullptr;
return fn;
}
else {
fnT fn = expm1_contig_impl<T>;
return fn;
}
}
};

template <typename fnT, typename T> struct Expm1TypeMapFactory
{
/*! @brief get typeid for output type of std::expm1(T x) */
std::enable_if_t<std::is_same<fnT, int>::value, int> get()
{
using rT = typename Expm1OutputType<T>::value_type;
;
return td_ns::GetTypeid<rT>{}.get();
}
};

template <typename T1, typename T2, typename T3> class expm1_strided_kernel;

typedef sycl::event (*expm1_strided_impl_fn_ptr_t)(
sycl::queue,
size_t,
int,
const py::ssize_t *,
const char *,
py::ssize_t,
char *,
py::ssize_t,
const std::vector<sycl::event> &,
const std::vector<sycl::event> &);

template <typename argTy>
sycl::event
expm1_strided_impl(sycl::queue exec_q,
size_t nelems,
int nd,
const py::ssize_t *shape_and_strides,
const char *arg_p,
py::ssize_t arg_offset,
char *res_p,
py::ssize_t res_offset,
const std::vector<sycl::event> &depends,
const std::vector<sycl::event> &additional_depends)
{
sycl::event comp_ev = exec_q.submit([&](sycl::handler &cgh) {
cgh.depends_on(depends);
cgh.depends_on(additional_depends);

using resTy = typename Expm1OutputType<argTy>::value_type;
using IndexerT =
typename dpctl::tensor::offset_utils::TwoOffsets_StridedIndexer;

IndexerT arg_res_indexer(nd, arg_offset, res_offset, shape_and_strides);

const argTy *arg_tp = reinterpret_cast<const argTy *>(arg_p);
resTy *res_tp = reinterpret_cast<resTy *>(res_p);

sycl::range<1> gRange{nelems};

cgh.parallel_for<expm1_strided_kernel<argTy, resTy, IndexerT>>(
gRange, Expm1StridedFunctor<argTy, resTy, IndexerT>(
arg_tp, res_tp, arg_res_indexer));
});
return comp_ev;
}

template <typename fnT, typename T> struct Expm1StridedFactory
{
fnT get()
{
if constexpr (std::is_same_v<typename Expm1OutputType<T>::value_type,
void>) {
fnT fn = nullptr;
return fn;
}
else {
fnT fn = expm1_strided_impl<T>;
return fn;
}
}
};

} // namespace expm1
} // namespace kernels
} // namespace tensor
} // namespace dpctl
Loading