-
Make sure
data
folder in the same directory of the notebooks. -
Run any notebook using Jupyter Notebook.
Based on 20% validation. The results will be different on different dataset. Trained on a GTX 960, 4GB VRAM.
name | accuracy | time taken (s) |
---|---|---|
1. basic-rnn | 0.68 | 1.3219 |
2. basic-rnn-hinge | 0.65 | 1.2455 |
3. basic-rnn-huber | 0.68 | 1.2468 |
4. basic-rnn-bidirectional | 0.71 | 3.8174 |
5. basic-rnn-bidirectional-hinge | 0.68 | 2.5127 |
6. basic-rnn-bidirectional-huber | 0.63 | 3.5095 |
7. lstm-rnn | 0.73 | 2.69683 |
8. lstm-rnn-hinge | 0.72 | 8.2088 |
9. lstm-rnn-huber | 0.73 | 10.1754 |
10. lstm-rnn-bidirectional | 0.71 | 11.0388 |
11. lstm-rnn-bidirectional-huber | 0.71 | 5.5258 |
12. lstm-rnn-dropout-l2 | 0.74 | 3.2420 |
13. gru-rnn | 0.72 | 3.16123 |
14. gru-rnn-hinge | 0.72 | 6.71951 |
15. gru-rnn-huber | 0.70 | 7.93373 |
16. gru-rnn-bidirectional | 0.73 | 2.91590 |
17. gru-rnn-bidirectional-hinge | 0.72 | 5.66385 |
18. gru-rnn-bidirectional-huber | 0.70 | 18.01133 |
19. lstm-cnn-rnn | 0.65 | 4.42849 |
20. kmax-cnn | 0.73 | 18.89667 |
21. lstm-cnn-rnn-highway | 0.68 | 3.23122 |
22. lstm-rnn-attention | 0.75 | 13.97496 |
23. dilated-rnn-lstm | 0.25 | 24.54002 |
24. lnlstm-rnn | 0.68 | 24.86363 |
25. only-attention | 0.74 | 2.63291 |
26. multihead-attention | 0.69 | 9.033228 |
27. neural-turing-machine | ||
28. lstm-seq2seq | 0.72 | 9.63291 |
29. lstm-seq2seq-luong | ||
30. lstm-seq2seq-bahdanau | ||
31. lstm-seq2seq-beam | ||
32. lstm-seq2seq-birnn | ||
33. pointer-net | ||
34. lstm-rnn-bahdanau | 0.71 | 9.81993 |
35. lstm-rnn-luong | 0.66 | 27.73932 |
36. lstm-rnn-bahdanau-luong | 0.69 | 36.97628 |
37. lstm-birnn-bahdanau-luong | 0.70 | 38.86009 |
38. bytenet | ||
39. fast-slow-lstm | ||
40. siamese-network | 0.52 | 7.13535 |
41. estimator | ||
42. capsule-rnn-lstm | ||
43. capsule-seq2seq-lstm | ||
44. capsule-birrn-seq2seq-lstm | ||
45. nested-lstm | ||
46. lstm-seq2seq-highway | ||
47. triplet-loss-lstm | 0.50 | |
48. dnc | 0.68 | 85.98529 |
49. convlstm | 0.69 | 2.66726 |
50. temporalconvd | 0.66 | 11.90590 |
51. batch-all-triplet-loss-lstm | 0.70 | |
52. fast-text | 0.76 | 0.49499 |
53. gated-convolution-network | 0.67 | 3.37712 |
54. simple-recurrent-units | 0.65 | 3.12624 |
55. lstm-han | 0.50 | 3.47965 |
56. bert | 0.73 | 6.31015 |
57. dynamic-memory-network | 0.71 | 3.25820 |
58. entity-network | 0.74 | 1.10458 |
59. memory-network | 0.58 | 1.157306 |
60. char-sparse | 0.76 | 2.350096 |
61. residual-network | 0.72 | 9.557085 |
62. residual-network-bahdanau | 0.71 | 11.53799 |
63. deep-pyramid-cnn | 0.68 | 6.980528 |
64. transformer-xl | 0.51 | 38.66338 |
65. gpt-2 | 0.62 | 105.2107 |
66. quasi-rnn | 0.66 | 166.1456 |
67. tacotron | 0.74 | 360.5551 |