This repository was archived by the owner on May 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrepeated_field.h
2919 lines (2528 loc) · 102 KB
/
repeated_field.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// Typically, clients should not need to access RepeatedField objects directly,
// but should instead use the accessor functions generated automatically by the
// protocol compiler.
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#include <utility>
#ifdef _MSC_VER
// This is required for min/max on VS2013 only.
#include <algorithm>
#endif
#include <iterator>
#include <limits>
#include <string>
#include <type_traits>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/port.h>
#include <google/protobuf/stubs/casts.h>
#include <type_traits>
// Must be included last.
#include <google/protobuf/port_def.inc>
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Message;
class Reflection;
template <typename T>
struct WeakRepeatedPtrField;
namespace internal {
class MergePartialFromCodedStreamHelper;
class SwapFieldHelper;
// kRepeatedFieldLowerClampLimit is the smallest size that will be allocated
// when growing a repeated field.
constexpr int kRepeatedFieldLowerClampLimit = 4;
// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
// this will clamp to the maximum int value instead of following exponential
// growth when growing a repeated field.
constexpr int kRepeatedFieldUpperClampLimit =
(std::numeric_limits<int>::max() / 2) + 1;
// A utility function for logging that doesn't need any template types.
void LogIndexOutOfBounds(int index, int size);
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
return static_cast<int>(std::distance(begin, end));
}
template <typename Iter>
inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
std::input_iterator_tag /*unused*/) {
return -1;
}
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end) {
typedef typename std::iterator_traits<Iter>::iterator_category Category;
return CalculateReserve(begin, end, Category());
}
// Swaps two blocks of memory of size sizeof(T).
template <typename T>
inline void SwapBlock(char* p, char* q) {
T tmp;
memcpy(&tmp, p, sizeof(T));
memcpy(p, q, sizeof(T));
memcpy(q, &tmp, sizeof(T));
}
// Swaps two blocks of memory of size kSize:
// template <int kSize> void memswap(char* p, char* q);
template <int kSize>
inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) {
}
#define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \
template <int kSize> \
typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \
void>::type \
memswap(char* p, char* q) { \
SwapBlock<reg_type>(p, q); \
memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \
q + sizeof(reg_type)); \
}
PROTO_MEMSWAP_DEF_SIZE(uint8, 2)
PROTO_MEMSWAP_DEF_SIZE(uint16, 4)
PROTO_MEMSWAP_DEF_SIZE(uint32, 8)
#ifdef __SIZEOF_INT128__
PROTO_MEMSWAP_DEF_SIZE(uint64, 16)
PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31))
#else
PROTO_MEMSWAP_DEF_SIZE(uint64, (1u << 31))
#endif
#undef PROTO_MEMSWAP_DEF_SIZE
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages). Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField final {
static_assert(
alignof(Arena) >= alignof(Element),
"We only support types that have an alignment smaller than Arena");
public:
constexpr RepeatedField();
explicit RepeatedField(Arena* arena);
RepeatedField(const RepeatedField& other);
template <typename Iter,
typename = typename std::enable_if<std::is_constructible<
Element, decltype(*std::declval<Iter>())>::value>::type>
RepeatedField(Iter begin, Iter end);
~RepeatedField();
RepeatedField& operator=(const RepeatedField& other);
RepeatedField(RepeatedField&& other) noexcept;
RepeatedField& operator=(RepeatedField&& other) noexcept;
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
const Element& operator[](int index) const { return Get(index); }
Element& operator[](int index) { return *Mutable(index); }
const Element& at(int index) const;
Element& at(int index);
void Set(int index, const Element& value);
void Add(const Element& value);
// Appends a new element and return a pointer to it.
// The new element is uninitialized if |Element| is a POD type.
Element* Add();
// Append elements in the range [begin, end) after reserving
// the appropriate number of elements.
template <typename Iter>
void Add(Iter begin, Iter end);
// Remove the last element in the array.
void RemoveLast();
// Extract elements with indices in "[start .. start+num-1]".
// Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element* elements);
void Clear();
void MergeFrom(const RepeatedField& other);
void CopyFrom(const RepeatedField& other);
// Replaces the contents with RepeatedField(begin, end).
template <typename Iter>
void Assign(Iter begin, Iter end);
// Reserve space to expand the field to at least the given size. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Resize the RepeatedField to a new, smaller size. This is O(1).
void Truncate(int new_size);
void AddAlreadyReserved(const Element& value);
// Appends a new element and return a pointer to it.
// The new element is uninitialized if |Element| is a POD type.
// Should be called only if Capacity() > Size().
Element* AddAlreadyReserved();
Element* AddNAlreadyReserved(int elements);
int Capacity() const;
// Like STL resize. Uses value to fill appended elements.
// Like Truncate() if new_size <= size(), otherwise this is
// O(new_size - size()).
void Resize(int new_size, const Element& value);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element* mutable_data();
const Element* data() const;
// Swap entire contents with "other". If they are separate arenas then, copies
// data between each other.
void Swap(RepeatedField* other);
// Swap entire contents with "other". Should be called only if the caller can
// guarantee that both repeated fields are on the same arena or are on the
// heap. Swapping between different arenas is disallowed and caught by a
// GOOGLE_DCHECK (see API docs for details).
void UnsafeArenaSwap(RepeatedField* other);
// Swap two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef Element* iterator;
typedef const Element* const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
const_iterator end() const;
const_iterator cend() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Returns the number of bytes used by the repeated field, excluding
// sizeof(*this)
size_t SpaceUsedExcludingSelfLong() const;
int SpaceUsedExcludingSelf() const {
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
}
// Removes the element referenced by position.
//
// Returns an iterator to the element immediately following the removed
// element.
//
// Invalidates all iterators at or after the removed element, including end().
iterator erase(const_iterator position);
// Removes the elements in the range [first, last).
//
// Returns an iterator to the element immediately following the removed range.
//
// Invalidates all iterators at or after the removed range, including end().
iterator erase(const_iterator first, const_iterator last);
// Get the Arena on which this RepeatedField stores its elements.
inline Arena* GetArena() const {
return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_)
: rep()->arena;
}
// For internal use only.
//
// This is public due to it being called by generated code.
inline void InternalSwap(RepeatedField* other);
private:
static constexpr int kInitialSize = 0;
// A note on the representation here (see also comment below for
// RepeatedPtrFieldBase's struct Rep):
//
// We maintain the same sizeof(RepeatedField) as before we added arena support
// so that we do not degrade performance by bloating memory usage. Directly
// adding an arena_ element to RepeatedField is quite costly. By using
// indirection in this way, we keep the same size when the RepeatedField is
// empty (common case), and add only an 8-byte header to the elements array
// when non-empty. We make sure to place the size fields directly in the
// RepeatedField class to avoid costly cache misses due to the indirection.
int current_size_;
int total_size_;
struct Rep {
Arena* arena;
// Here we declare a huge array as a way of approximating C's "flexible
// array member" feature without relying on undefined behavior.
Element elements[(std::numeric_limits<int>::max() - 2 * sizeof(Arena*)) /
sizeof(Element)];
};
static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
// If total_size_ == 0 this points to an Arena otherwise it points to the
// elements member of a Rep struct. Using this invariant allows the storage of
// the arena pointer without an extra allocation in the constructor.
void* arena_or_elements_;
// Return pointer to elements array.
// pre-condition: the array must have been allocated.
Element* elements() const {
GOOGLE_DCHECK_GT(total_size_, 0);
// Because of above pre-condition this cast is safe.
return unsafe_elements();
}
// Return pointer to elements array if it exists otherwise either null or
// a invalid pointer is returned. This only happens for empty repeated fields,
// where you can't dereference this pointer anyway (it's empty).
Element* unsafe_elements() const {
return static_cast<Element*>(arena_or_elements_);
}
// Return pointer to the Rep struct.
// pre-condition: the Rep must have been allocated, ie elements() is safe.
Rep* rep() const {
char* addr = reinterpret_cast<char*>(elements()) - offsetof(Rep, elements);
return reinterpret_cast<Rep*>(addr);
}
friend class Arena;
typedef void InternalArenaConstructable_;
// Move the contents of |from| into |to|, possibly clobbering |from| in the
// process. For primitive types this is just a memcpy(), but it could be
// specialized for non-primitive types to, say, swap each element instead.
void MoveArray(Element* to, Element* from, int size);
// Copy the elements of |from| into |to|.
void CopyArray(Element* to, const Element* from, int size);
// Internal helper to delete all elements and deallocate the storage.
void InternalDeallocate(Rep* rep, int size) {
if (rep != NULL) {
Element* e = &rep->elements[0];
if (!std::is_trivial<Element>::value) {
Element* limit = &rep->elements[size];
for (; e < limit; e++) {
e->~Element();
}
}
if (rep->arena == NULL) {
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
::operator delete(static_cast<void*>(rep), bytes);
#else
::operator delete(static_cast<void*>(rep));
#endif
}
}
}
// This class is a performance wrapper around RepeatedField::Add(const T&)
// function. In general unless a RepeatedField is a local stack variable LLVM
// has a hard time optimizing Add. The machine code tends to be
// loop:
// mov %size, dword ptr [%repeated_field] // load
// cmp %size, dword ptr [%repeated_field + 4]
// jae fallback
// mov %buffer, qword ptr [%repeated_field + 8]
// mov dword [%buffer + %size * 4], %value
// inc %size // increment
// mov dword ptr [%repeated_field], %size // store
// jmp loop
//
// This puts a load/store in each iteration of the important loop variable
// size. It's a pretty bad compile that happens even in simple cases, but
// largely the presence of the fallback path disturbs the compilers mem-to-reg
// analysis.
//
// This class takes ownership of a repeated field for the duration of it's
// lifetime. The repeated field should not be accessed during this time, ie.
// only access through this class is allowed. This class should always be a
// function local stack variable. Intended use
//
// void AddSequence(const int* begin, const int* end, RepeatedField<int>* out)
// {
// RepeatedFieldAdder<int> adder(out); // Take ownership of out
// for (auto it = begin; it != end; ++it) {
// adder.Add(*it);
// }
// }
//
// Typically due to the fact adder is a local stack variable. The compiler
// will be successful in mem-to-reg transformation and the machine code will
// be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer + %size *
// 4], %val inc %size jmp loop
//
// The first version executes at 7 cycles per iteration while the second
// version near 1 or 2 cycles.
template <int = 0, bool = std::is_trivial<Element>::value>
class FastAdderImpl {
public:
explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {
index_ = repeated_field_->current_size_;
capacity_ = repeated_field_->total_size_;
buffer_ = repeated_field_->unsafe_elements();
}
~FastAdderImpl() { repeated_field_->current_size_ = index_; }
void Add(Element val) {
if (index_ == capacity_) {
repeated_field_->current_size_ = index_;
repeated_field_->Reserve(index_ + 1);
capacity_ = repeated_field_->total_size_;
buffer_ = repeated_field_->unsafe_elements();
}
buffer_[index_++] = val;
}
private:
RepeatedField* repeated_field_;
int index_;
int capacity_;
Element* buffer_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
};
// FastAdder is a wrapper for adding fields. The specialization above handles
// POD types more efficiently than RepeatedField.
template <int I>
class FastAdderImpl<I, false> {
public:
explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {}
void Add(const Element& val) { repeated_field_->Add(val); }
private:
RepeatedField* repeated_field_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
};
using FastAdder = FastAdderImpl<>;
friend class TestRepeatedFieldHelper;
friend class ::google::protobuf::internal::ParseContext;
};
namespace internal {
template <typename It>
class RepeatedPtrIterator;
template <typename It, typename VoidPtr>
class RepeatedPtrOverPtrsIterator;
} // namespace internal
namespace internal {
// This is a helper template to copy an array of elements efficiently when they
// have a trivial copy constructor, and correctly otherwise. This really
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
// effectively.
template <typename Element,
bool HasTrivialCopy = std::is_trivial<Element>::value>
struct ElementCopier {
void operator()(Element* to, const Element* from, int array_size);
};
} // namespace internal
namespace internal {
// type-traits helper for RepeatedPtrFieldBase: we only want to invoke
// arena-related "copy if on different arena" behavior if the necessary methods
// exist on the contained type. In particular, we rely on MergeFrom() existing
// as a general proxy for the fact that a copy will work, and we also provide a
// specific override for std::string*.
template <typename T>
struct TypeImplementsMergeBehaviorProbeForMergeFrom {
typedef char HasMerge;
typedef long HasNoMerge;
// We accept either of:
// - void MergeFrom(const T& other)
// - bool MergeFrom(const T& other)
//
// We mangle these names a bit to avoid compatibility issues in 'unclean'
// include environments that may have, e.g., "#define test ..." (yes, this
// exists).
template <typename U, typename RetType, RetType (U::*)(const U& arg)>
struct CheckType;
template <typename U>
static HasMerge Check(CheckType<U, void, &U::MergeFrom>*);
template <typename U>
static HasMerge Check(CheckType<U, bool, &U::MergeFrom>*);
template <typename U>
static HasNoMerge Check(...);
// Resolves to either std::true_type or std::false_type.
typedef std::integral_constant<bool,
(sizeof(Check<T>(0)) == sizeof(HasMerge))>
type;
};
template <typename T, typename = void>
struct TypeImplementsMergeBehavior
: TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};
template <>
struct TypeImplementsMergeBehavior<std::string> {
typedef std::true_type type;
};
template <typename T>
struct IsMovable
: std::integral_constant<bool, std::is_move_constructible<T>::value &&
std::is_move_assignable<T>::value> {};
// This is the common base class for RepeatedPtrFields. It deals only in void*
// pointers. Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler. Its signature is:
// class TypeHandler {
// public:
// typedef MyType Type;
// static Type* New();
// static Type* NewFromPrototype(const Type* prototype,
// Arena* arena);
// static void Delete(Type*);
// static void Clear(Type*);
// static void Merge(const Type& from, Type* to);
//
// // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
// static int SpaceUsedLong(const Type&);
// };
class PROTOBUF_EXPORT RepeatedPtrFieldBase {
protected:
constexpr RepeatedPtrFieldBase();
explicit RepeatedPtrFieldBase(Arena* arena);
~RepeatedPtrFieldBase() {
#ifndef NDEBUG
// Try to trigger segfault / asan failure in non-opt builds. If arena_
// lifetime has ended before the destructor.
if (arena_) (void)arena_->SpaceAllocated();
#endif
}
// Must be called from destructor.
template <typename TypeHandler>
void Destroy();
bool empty() const;
int size() const;
template <typename TypeHandler>
const typename TypeHandler::Type& at(int index) const;
template <typename TypeHandler>
typename TypeHandler::Type& at(int index);
template <typename TypeHandler>
typename TypeHandler::Type* Mutable(int index);
template <typename TypeHandler>
void Delete(int index);
template <typename TypeHandler>
typename TypeHandler::Type* Add(typename TypeHandler::Type* prototype = NULL);
public:
// The next few methods are public so that they can be called from generated
// code when implicit weak fields are used, but they should never be called by
// application code.
template <typename TypeHandler>
const typename TypeHandler::Type& Get(int index) const;
// Creates and adds an element using the given prototype, without introducing
// a link-time dependency on the concrete message type. This method is used to
// implement implicit weak fields. The prototype may be NULL, in which case an
// ImplicitWeakMessage will be used as a placeholder.
MessageLite* AddWeak(const MessageLite* prototype);
template <typename TypeHandler>
void Clear();
template <typename TypeHandler>
void MergeFrom(const RepeatedPtrFieldBase& other);
inline void InternalSwap(RepeatedPtrFieldBase* other);
protected:
template <
typename TypeHandler,
typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
void Add(typename TypeHandler::Type&& value);
template <typename TypeHandler>
void RemoveLast();
template <typename TypeHandler>
void CopyFrom(const RepeatedPtrFieldBase& other);
void CloseGap(int start, int num);
void Reserve(int new_size);
int Capacity() const;
template <typename TypeHandler>
static inline typename TypeHandler::Type* copy(
typename TypeHandler::Type* value) {
auto* new_value = TypeHandler::NewFromPrototype(value, nullptr);
TypeHandler::Merge(*value, new_value);
return new_value;
}
// Used for constructing iterators.
void* const* raw_data() const;
void** raw_mutable_data() const;
template <typename TypeHandler>
typename TypeHandler::Type** mutable_data();
template <typename TypeHandler>
const typename TypeHandler::Type* const* data() const;
template <typename TypeHandler>
PROTOBUF_NDEBUG_INLINE void Swap(RepeatedPtrFieldBase* other);
void SwapElements(int index1, int index2);
template <typename TypeHandler>
size_t SpaceUsedExcludingSelfLong() const;
// Advanced memory management --------------------------------------
// Like Add(), but if there are no cleared objects to use, returns NULL.
template <typename TypeHandler>
typename TypeHandler::Type* AddFromCleared();
template <typename TypeHandler>
void AddAllocated(typename TypeHandler::Type* value) {
typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
AddAllocatedInternal<TypeHandler>(value, t);
}
template <typename TypeHandler>
void UnsafeArenaAddAllocated(typename TypeHandler::Type* value);
template <typename TypeHandler>
PROTOBUF_MUST_USE_RESULT typename TypeHandler::Type* ReleaseLast() {
typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
return ReleaseLastInternal<TypeHandler>(t);
}
// Releases last element and returns it, but does not do out-of-arena copy.
// And just returns the raw pointer to the contained element in the arena.
template <typename TypeHandler>
typename TypeHandler::Type* UnsafeArenaReleaseLast();
int ClearedCount() const;
template <typename TypeHandler>
void AddCleared(typename TypeHandler::Type* value);
template <typename TypeHandler>
PROTOBUF_MUST_USE_RESULT typename TypeHandler::Type* ReleaseCleared();
template <typename TypeHandler>
void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type);
template <typename TypeHandler>
void AddAllocatedInternal(typename TypeHandler::Type* value, std::false_type);
template <typename TypeHandler>
PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena);
template <typename TypeHandler>
PROTOBUF_NOINLINE void AddAllocatedSlowWithoutCopy(
typename TypeHandler::Type* value);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLastInternal(std::true_type);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLastInternal(std::false_type);
template <typename TypeHandler>
PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other);
inline Arena* GetArena() const { return arena_; }
private:
static constexpr int kInitialSize = 0;
// A few notes on internal representation:
//
// We use an indirected approach, with struct Rep, to keep
// sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
// was added, namely, 3 8-byte machine words on x86-64. An instance of Rep is
// allocated only when the repeated field is non-empty, and it is a
// dynamically-sized struct (the header is directly followed by elements[]).
// We place arena_ and current_size_ directly in the object to avoid cache
// misses due to the indirection, because these fields are checked frequently.
// Placing all fields directly in the RepeatedPtrFieldBase instance costs
// significant performance for memory-sensitive workloads.
Arena* arena_;
int current_size_;
int total_size_;
struct Rep {
int allocated_size;
// Here we declare a huge array as a way of approximating C's "flexible
// array member" feature without relying on undefined behavior.
void* elements[(std::numeric_limits<int>::max() - 2 * sizeof(int)) /
sizeof(void*)];
};
static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
Rep* rep_;
template <typename TypeHandler>
static inline typename TypeHandler::Type* cast(void* element) {
return reinterpret_cast<typename TypeHandler::Type*>(element);
}
template <typename TypeHandler>
static inline const typename TypeHandler::Type* cast(const void* element) {
return reinterpret_cast<const typename TypeHandler::Type*>(element);
}
// Non-templated inner function to avoid code duplication. Takes a function
// pointer to the type-specific (templated) inner allocate/merge loop.
void MergeFromInternal(const RepeatedPtrFieldBase& other,
void (RepeatedPtrFieldBase::*inner_loop)(void**,
void**, int,
int));
template <typename TypeHandler>
PROTOBUF_NOINLINE void MergeFromInnerLoop(void** our_elems,
void** other_elems, int length,
int already_allocated);
// Internal helper: extend array space if necessary to contain |extend_amount|
// more elements, and return a pointer to the element immediately following
// the old list of elements. This interface factors out common behavior from
// Reserve() and MergeFrom() to reduce code size. |extend_amount| must be > 0.
void** InternalExtend(int extend_amount);
// Internal helper for Add: add "obj" as the next element in the
// array, including potentially resizing the array with Reserve if
// needed
void* AddOutOfLineHelper(void* obj);
// The reflection implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class ::PROTOBUF_NAMESPACE_ID::Reflection;
friend class ::PROTOBUF_NAMESPACE_ID::internal::SwapFieldHelper;
// ExtensionSet stores repeated message extensions as
// RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
// SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
// reinterpreting MessageLite as Message. ExtensionSet also needs to make use
// of AddFromCleared(), which is not part of the public interface.
friend class ExtensionSet;
// The MapFieldBase implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class MapFieldBase;
friend class MapFieldBaseStub;
// The table-driven MergePartialFromCodedStream implementation needs to
// operate on RepeatedPtrField<MessageLite>.
friend class MergePartialFromCodedStreamHelper;
friend class AccessorHelper;
template <typename T>
friend struct google::protobuf::WeakRepeatedPtrField;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
};
template <typename GenericType>
class GenericTypeHandler {
public:
typedef GenericType Type;
using Movable = IsMovable<GenericType>;
static inline GenericType* New(Arena* arena) {
return Arena::CreateMaybeMessage<Type>(arena);
}
static inline GenericType* New(Arena* arena, GenericType&& value) {
return Arena::Create<GenericType>(arena, std::move(value));
}
static inline GenericType* NewFromPrototype(const GenericType* prototype,
Arena* arena = NULL);
static inline void Delete(GenericType* value, Arena* arena) {
if (arena == NULL) {
delete value;
}
}
static inline Arena* GetOwningArena(GenericType* value) {
return Arena::GetOwningArena<Type>(value);
}
static inline void Clear(GenericType* value) { value->Clear(); }
PROTOBUF_NOINLINE
static void Merge(const GenericType& from, GenericType* to);
static inline size_t SpaceUsedLong(const GenericType& value) {
return value.SpaceUsedLong();
}
};
template <typename GenericType>
GenericType* GenericTypeHandler<GenericType>::NewFromPrototype(
const GenericType* /* prototype */, Arena* arena) {
return New(arena);
}
template <typename GenericType>
void GenericTypeHandler<GenericType>::Merge(const GenericType& from,
GenericType* to) {
to->MergeFrom(from);
}
// NewFromPrototype() and Merge() are not defined inline here, as we will need
// to do a virtual function dispatch anyways to go from Message* to call
// New/Merge.
template <>
MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
const MessageLite* prototype, Arena* arena);
template <>
inline Arena* GenericTypeHandler<MessageLite>::GetOwningArena(
MessageLite* value) {
return value->GetOwningArena();
}
template <>
void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
MessageLite* to);
template <>
inline void GenericTypeHandler<std::string>::Clear(std::string* value) {
value->clear();
}
template <>
void GenericTypeHandler<std::string>::Merge(const std::string& from,
std::string* to);
// Message specialization bodies defined in message.cc. This split is necessary
// to allow proto2-lite (which includes this header) to be independent of
// Message.
template <>
PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
const Message* prototype, Arena* arena);
template <>
PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetOwningArena(
Message* value);
class StringTypeHandler {
public:
typedef std::string Type;
using Movable = IsMovable<Type>;
static inline std::string* New(Arena* arena) {
return Arena::Create<std::string>(arena);
}
static inline std::string* New(Arena* arena, std::string&& value) {
return Arena::Create<std::string>(arena, std::move(value));
}
static inline std::string* NewFromPrototype(const std::string*,
Arena* arena) {
return New(arena);
}
static inline Arena* GetOwningArena(std::string*) { return nullptr; }
static inline void Delete(std::string* value, Arena* arena) {
if (arena == NULL) {
delete value;
}
}
static inline void Clear(std::string* value) { value->clear(); }
static inline void Merge(const std::string& from, std::string* to) {
*to = from;
}
static size_t SpaceUsedLong(const std::string& value) {
return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
}
};
} // namespace internal
// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
public:
constexpr RepeatedPtrField();
explicit RepeatedPtrField(Arena* arena);
RepeatedPtrField(const RepeatedPtrField& other);
template <typename Iter,
typename = typename std::enable_if<std::is_constructible<
Element, decltype(*std::declval<Iter>())>::value>::type>
RepeatedPtrField(Iter begin, Iter end);
~RepeatedPtrField();
RepeatedPtrField& operator=(const RepeatedPtrField& other);
RepeatedPtrField(RepeatedPtrField&& other) noexcept;
RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
Element* Add();
void Add(Element&& value);
// Append elements in the range [begin, end) after reserving
// the appropriate number of elements.
template <typename Iter>
void Add(Iter begin, Iter end);
const Element& operator[](int index) const { return Get(index); }
Element& operator[](int index) { return *Mutable(index); }
const Element& at(int index) const;
Element& at(int index);
// Remove the last element in the array.
// Ownership of the element is retained by the array.
void RemoveLast();
// Delete elements with indices in the range [start .. start+num-1].
// Caution: implementation moves all elements with indices [start+num .. ].
// Calling this routine inside a loop can cause quadratic behavior.
void DeleteSubrange(int start, int num);
void Clear();
void MergeFrom(const RepeatedPtrField& other);
void CopyFrom(const RepeatedPtrField& other);
// Replaces the contents with RepeatedPtrField(begin, end).
template <typename Iter>
void Assign(Iter begin, Iter end);
// Reserve space to expand the field to at least the given size. This only
// resizes the pointer array; it doesn't allocate any objects. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
int Capacity() const;
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element** mutable_data();
const Element* const* data() const;
// Swap entire contents with "other". If they are on separate arenas, then
// copies data.
void Swap(RepeatedPtrField* other);