-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSupervisado_SVN.R
51 lines (40 loc) · 1.43 KB
/
Supervisado_SVN.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#-----------------------------------------------------------
#
# SVM
#
#-----------------------------------------------------------
library(e1071)
library(snowfall)
library(snow)
library(parallel)
# 1 Borrar datos y setwd
rm(list=ls())
setwd("C:/Users/Admin/Desktop/Master/Estadistica/Practica Final")
datos <- read.table('p3_train.txt',header=TRUE,sep='\t')
#En vez de hacer partición, se cogen directamente todos los datos.
detectCores(all.tests = FALSE, logical = TRUE)
set.seed(12345)
n0 <- 5000
datos <- datos[,-562]
#AJUSTE MODELO
set.seed(12345)
mod.svm <- svm(activity~.,data = datos,cost=1)
pr <- predict(mod.svm,datos)
t <- table(pr,datos$activity)
t
sum(diag(t))/sum(t)
mod.tune <- tune(svm,activity~.,data=datos,kernel=c('linear','polynomial','radial','sigmoid'),ranges=list(cost=c(0.01,0.2,0.1,1,5,10,100)))
summary(mod.tune)
mod.tune$best.parameters
mod.tune$best.model
mod.tune <- tune(svm,activity~.,data=train,kernel=c('linear','polynomial','radial','sigmoid'),ranges=list(cost=c(0.01,0.2,0.1,1,5,10,100))
,tunecontrol = tune.control(sampling = "boot"))
summary(mod.tune)
mod.tune$best.parameters
mod.tune$best.model
#Generamos fichero p3 para shiny
datosTest <- read.table('p3_test.txt',header=TRUE,sep='\t')
preds <- predict(mod.tune$best.model, newdata = datosTest)
volcado <- data.frame(activity=preds)
write.table(volcado, 'p3.txt', row.names = FALSE, col.names = TRUE,sep='\t', quote = FALSE)
#98.45 a shiny