ℹ️ The original code publication can be accessed under the version tag v.0.1.0. The instructions here describe how to reproduce the results with the current benchmark version.
For installation and general usage, please follow the FD-Shifts README.
@inproceedings{
jaeger2023a,
title={A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification},
author={Paul F Jaeger and Carsten Tim L{\"u}th and Lukas Klein and Till J. Bungert},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=YnkGMIh0gvX}
}
For the predefined experiments we expect the data to be in the following folder
structure relative to the folder you set for $DATASET_ROOT_DIR
.
<$DATASET_ROOT_DIR>
├── breeds
│ └── ILSVRC ⇒ ../imagenet/ILSVRC
├── imagenet
│ ├── ILSVRC
├── cifar10
├── cifar100
├── corrupt_cifar10
├── corrupt_cifar100
├── svhn
├── tinyimagenet
├── tinyimagenet_resize
├── wilds_animals
│ └── iwildcam_v2.0
└── wilds_camelyon
└── camelyon17_v1.0
For information regarding where to download these datasets from and what you have to do with them please check out the dataset documentation.
To get a list of all fully qualified names for all experiments in the paper, use
fd-shifts list-experiments --custom-filter=iclr2023
To reproduce all results of the paper:
fd-shifts launch --mode=train --custom-filter=iclr2023
fd-shifts launch --mode=test --custom-filter=iclr2023
fd-shifts launch --mode=analysis --custom-filter=iclr2023
All pretrained model weights used for the benchmark can be found on Zenodo under the following links:
- iWildCam-2020-Wilds
- iWildCam-2020-Wilds (OpenSet Training)
- BREEDS-ENTITY-13
- CAMELYON-17-Wilds
- CIFAR-100
- CIFAR-100 (superclasses)
- CIFAR-10
- SVHN
- SVHN (OpenSet Training)
fd-shifts report