-
Notifications
You must be signed in to change notification settings - Fork 3
/
plot_question_answering_task.py
257 lines (220 loc) · 12.7 KB
/
plot_question_answering_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""Plot layer outputs of the model for the question answering tasks"""
import argparse
import random
import sys
from collections import OrderedDict
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import utils.checkpoint
from data.babi_dataset import BABIDataset
from functions.autograd_functions import SpikeFunction
from functions.plasticity_functions import InvertedOjaWithSoftUpperBound
from models.network_models import QuestionAnswering
from models.neuron_models import IafPscDelta
def main():
parser = argparse.ArgumentParser(description='Question answering task plotting')
parser.add_argument('--checkpoint_path', default='', type=str, metavar='PATH',
help='Path to checkpoint (default: none)')
parser.add_argument('--check_params', default=1, type=int, choices=[0, 1], metavar='CHECK_PARAMS',
help='When loading from a checkpoint check if the model was trained with the same parameters '
'as requested now (default: 1)')
parser.add_argument('--task', default=1, choices=range(1, 21), type=int, metavar='TASK',
help='The bAbI task (default: 1)')
parser.add_argument('--example', default=4, type=int, metavar='EXAMPLE',
help='The example of the bAbI task (default: 4)')
parser.add_argument('--ten_k', default=1, choices=[0, 1], type=int, metavar='TEN_K',
help='Use 10k examples (default: 1')
parser.add_argument('--add_time_words', default=0, choices=[0, 1], type=int, metavar='ADD_TIME_WORDS',
help='Add time word to sentences (default: 0)')
parser.add_argument('--sentence_duration', default=100, type=int, metavar='N',
help='Number of time steps for each sentence (default: 100)')
parser.add_argument('--max_num_sentences', default=50, type=int, metavar='N',
help='Extract only stories with no more than max_num_sentences. '
'If None extract all sentences of the stories (default: 50)')
parser.add_argument('--padding', default='pre', choices=['pre', 'post'], type=str, metavar='PADDING',
help='Where to pad (default: pre)')
parser.add_argument('--embedding_size', default=80, type=int, metavar='N',
help='Embedding size (default: 80)')
parser.add_argument('--memory_size', default=100, type=int, metavar='N',
help='Size of the memory matrix (default: 100)')
parser.add_argument('--w_max', default=1.0, type=float, metavar='N',
help='Soft maximum of Hebbian weights (default: 1.0)')
parser.add_argument('--gamma_pos', default=0.3, type=float, metavar='N',
help='Write factor of Hebbian rule (default: 0.3)')
parser.add_argument('--gamma_neg', default=0.3, type=float, metavar='N',
help='Forget factor of Hebbian rule (default: 0.3)')
parser.add_argument('--tau_trace', default=20.0, type=float, metavar='N',
help='Time constant of key- and value-trace (default: 20.0)')
parser.add_argument('--readout_delay', default=30, type=int, metavar='N',
help='Synaptic delay of the feedback-connections from value-neurons to key-neurons in the '
'reading layer (default: 30)')
parser.add_argument('--thr', default=0.1, type=float, metavar='N',
help='Spike threshold (default: 0.1)')
parser.add_argument('--perfect_reset', action='store_true',
help='Set the membrane potential to zero after a spike')
parser.add_argument('--refractory_time_steps', default=3, type=int, metavar='N',
help='The number of time steps the neuron is refractory (default: 3)')
parser.add_argument('--tau_mem', default=20.0, type=float, metavar='N',
help='Neuron membrane time constant (default: 20.0)')
parser.add_argument('--seed', default=None, type=int, metavar='N',
help='Seed for initializing (default: none)')
args = parser.parse_args()
args.ten_k = True if args.ten_k else False
args.add_time_words = True if args.add_time_words else False
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Data loading code
train_set = BABIDataset(root='./data', task=args.task, train=True, ten_k=args.ten_k,
max_num_sentences=args.max_num_sentences, download=True)
test_set = BABIDataset(root='./data', task=args.task, train=False, ten_k=args.ten_k,
max_num_sentences=args.max_num_sentences, download=False)
stories = train_set.stories + test_set.stories
max_num_words = max(train_set.stats['max_num_words'], test_set.stats['max_num_words'])
max_num_sentences = max(train_set.stats['max_num_sentences'], test_set.stats['max_num_sentences'])
vocab, vocab_size = BABIDataset.build_vocab(stories, max_num_sentences, add_time_words=args.add_time_words)
sentence_size = max_num_words + 1 if args.add_time_words else max_num_words
train_set.vectorize_stories(vocab, sentence_size, add_time_words=args.add_time_words, padding=args.padding)
test_set.vectorize_stories(vocab, sentence_size, add_time_words=args.add_time_words, padding=args.padding)
num_embeddings = len(vocab) # This is the length of the vocab with time-words
print("Vocab:", vocab, "Vocab size (without time-words):", vocab_size)
# Create the model
model = QuestionAnswering(
input_size=sentence_size,
output_size=vocab_size,
num_embeddings=num_embeddings,
embedding_size=args.embedding_size,
memory_size=args.memory_size,
mask_time_words=False, # is only relevant during training (here, it can be either false or true)
learn_encoding=True, # is only relevant during training (here, it can be either false or true)
num_time_steps=args.sentence_duration,
readout_delay=args.readout_delay,
learn_readout_delay=False, # is only relevant during training (here, it can be either false or true)
tau_trace=args.tau_trace,
plasticity_rule=InvertedOjaWithSoftUpperBound(w_max=args.w_max,
gamma_pos=args.gamma_pos,
gamma_neg=args.gamma_neg),
dynamics=IafPscDelta(thr=args.thr,
perfect_reset=args.perfect_reset,
refractory_time_steps=args.refractory_time_steps,
tau_mem=args.tau_mem,
spike_function=SpikeFunction))
# Load checkpoint
if args.checkpoint_path:
print("=> loading checkpoint '{}'".format(args.checkpoint_path))
checkpoint = utils.checkpoint.load_checkpoint(args.checkpoint_path, device)
best_acc = checkpoint['best_acc']
print("Best accuracy {}".format(best_acc))
if args.check_params:
for key, val in vars(args).items():
if key not in ['check_params', 'seed', 'checkpoint_path', 'example']:
if vars(checkpoint['params'])[key] != val:
print("=> You tried to load a model that was trained on different parameters as you requested "
"now. You may disable this check by setting `check_params` to 0. Aborting...")
sys.exit()
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
if k.startswith('module.'):
k = k[len('module.'):] # remove `module.`
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
# Switch to evaluate mode
model.eval()
# Get dataset example and run the model
sample, story_length = train_set[args.example]
print("Example story: ", train_set.stories[args.example])
print("Stats train set: ", train_set.stats)
print("Stats test set: ", test_set.stats)
story = sample['story'].unsqueeze(0)
query = sample['query'].unsqueeze(0)
outputs, encoding_outputs, writing_outputs, reading_outputs = model(story, query)
# Get the outputs
story_encoded = encoding_outputs[0].detach().numpy()
query_encoded = encoding_outputs[1].detach().numpy()
mem = writing_outputs[0].detach().numpy()
write_key = writing_outputs[1].detach().numpy()
write_val = writing_outputs[2].detach().numpy()
read_key = reading_outputs[0].detach().numpy()
read_val = reading_outputs[1].detach().numpy()
outputs = outputs.detach().numpy()
mean_rate_story_encoding = np.sum(story_encoded, axis=1) / (1e-3 * story_length * args.sentence_duration)
mean_rate_query_encoding = np.sum(query_encoded, axis=1) / (1e-3 * args.sentence_duration)
mean_rate_write_key = np.sum(write_key, axis=1) / (1e-3 * story_length * args.sentence_duration)
mean_rate_write_val = np.sum(write_val, axis=1) / (1e-3 * story_length * args.sentence_duration)
mean_rate_read_key = np.sum(read_key, axis=1) / (1e-3 * args.sentence_duration)
mean_rate_read_val = np.sum(read_val, axis=1) / (1e-3 * args.sentence_duration)
z_s_enc = story_encoded[0]
z_r_enc = query_encoded[0]
z_key = np.concatenate((write_key[0], read_key[0]), axis=0)
z_value = np.concatenate((write_val[0], read_val[0]), axis=0)
print("z_s_enc", z_s_enc.shape)
print("z_r_enc", z_r_enc.shape)
print("z_key", z_key.shape)
print("z_value", z_value.shape)
all_neurons = np.concatenate((
np.pad(z_s_enc, ((0, args.sentence_duration), (0, 0))),
np.pad(z_r_enc, ((z_s_enc.shape[0], 0), (0, 0))),
z_key,
z_value
), axis=1)
print("z_s_enc", (np.sum(z_s_enc, axis=0) / (1e-3 * (story_length + 1) * args.sentence_duration)).mean())
print("z_r_enc", (np.sum(z_r_enc, axis=0) / (1e-3 * (story_length + 1) * args.sentence_duration)).mean())
print("z_key", (np.sum(z_key, axis=0) / (1e-3 * (story_length + 1) * args.sentence_duration)).mean())
print("z_value", (np.sum(z_value, axis=0) / (1e-3 * (story_length + 1) * args.sentence_duration)).mean())
print("all_neurons", (np.sum(all_neurons, axis=0) / (1e-3 * (story_length + 1) * args.sentence_duration)).mean())
# Make some plots
fig, ax = plt.subplots(nrows=2, ncols=1, sharex='all')
ax[0].pcolormesh(story[0].T, cmap='binary')
ax[0].set_ylabel('story')
ax[1].pcolormesh(query.T, cmap='binary')
ax[1].set_ylabel('query')
plt.tight_layout()
fig, ax = plt.subplots(nrows=2, ncols=2, sharex='col', gridspec_kw={'width_ratios': [10, 1]})
ax[0, 0].pcolormesh(story_encoded[0].T, cmap='binary')
ax[0, 0].set_ylabel('story')
ax[0, 1].barh(range(args.embedding_size), mean_rate_story_encoding[0])
ax[0, 1].set_ylim([0, args.embedding_size])
ax[0, 1].set_yticks([])
ax[1, 0].pcolormesh(query_encoded[0].T, cmap='binary')
ax[1, 0].set_ylabel('query')
ax[1, 1].barh(range(args.embedding_size), mean_rate_query_encoding[0])
ax[1, 1].set_ylim([0, args.embedding_size])
ax[1, 1].set_yticks([])
plt.tight_layout()
fig, ax = plt.subplots(nrows=2, ncols=2, sharex='col', gridspec_kw={'width_ratios': [10, 1]})
ax[0, 0].pcolormesh(write_key[0].T, cmap='binary')
ax[0, 0].set_ylabel('write keys')
ax[0, 1].barh(range(args.memory_size), mean_rate_write_key[0])
ax[0, 1].set_ylim([0, args.memory_size])
ax[0, 1].set_yticks([])
ax[1, 0].pcolormesh(write_val[0].T, cmap='binary')
ax[1, 0].set_ylabel('write values')
ax[1, 1].barh(range(args.memory_size), mean_rate_write_val[0])
ax[1, 1].set_ylim([0, args.memory_size])
ax[1, 1].set_yticks([])
plt.tight_layout()
fig, ax = plt.subplots(nrows=1, ncols=1, sharex='all')
ax.matshow(mem[0], cmap='RdBu')
plt.tight_layout()
fig, ax = plt.subplots(nrows=2, ncols=2, sharex='col', gridspec_kw={'width_ratios': [10, 1]})
ax[0, 0].pcolormesh(read_key[0].T, cmap='binary')
ax[0, 0].set_ylabel('read keys')
ax[0, 1].barh(range(args.memory_size), mean_rate_read_key[0])
ax[0, 1].set_ylim([0, args.memory_size])
ax[0, 1].set_yticks([])
ax[1, 0].pcolormesh(read_val[0].T, cmap='binary')
ax[1, 0].set_ylabel('read values')
ax[1, 1].barh(range(args.memory_size), mean_rate_read_val[0])
ax[1, 1].set_ylim([0, args.memory_size])
ax[1, 1].set_yticks([])
plt.tight_layout()
fig, ax = plt.subplots(nrows=1, ncols=1, sharex='all')
ax.pcolormesh(outputs[0, None].T, cmap='binary')
plt.tight_layout()
plt.show()
if __name__ == '__main__':
main()