This is a extension for datafactory features.
Install this extension using the below CLI command
az extension add --name datafactory
Manage a data factory: more info
Examples:
az datafactory factory create \
--location location \
--name factoryName \
--resource-group groupName
az datafactory factory update \
--name factoryName\
--tags exampleTag="exampleValue" \
--resource-group groupName
Managed a linked service associated with the factory: more info
Examples:
az datafactory linked-service create \
--factory-name factoryName \
--properties @{propertiesJsonPath} \
--name linkedServiceName \
--resource-group groupName
Managed a view of the data that you want to use in data factory: more info
Examples:
az datafactory dataset create \
--properties @{propertiesJsonPath}
--name datasetName \
--factory-name factoryName \
--resource-group groupName
Use pipeline to define a set of activities to operate on your dataset: more info
Examples:
az datafactory pipeline create \
--factory-name factoryName \
--pipeline @{pipelineJsonPath} \
--name pipelineName \
--resource-group groupName
az datafactory pipeline update \
--factory-name factoryName \
--activities @{activitiesJsonPath} \
--parameters @{parametersJsonPath} \
--run-dimensions @{runDimensionJsonPath} \
--variables @{variableJsonPath}
--name pipelineName \
--resource-group groupName
You can manually execute your pipeline activities(on demand): more info
Examples:
az datafactory pipeline create-run \
--factory-name factoryName \
--parameters @{parametersJsonPath} \ # parameters pass to the pipeline activities
--name pipelineName \
--resource-group groupName
In the create run step, you will get a pipeline runId. Now you can choose to cancel this execution
az datafactory pipeline-run cancel \
--factory-name factoryName \
--resource-group groupName \
--run-id runId
You can query the pipeline run by factory
az datafactory pipeline-run query-by-factory \
--factory-name factoryName \
--filters filterCondition \ # example:
operand="PipelineName" operator="Equals" values="myPipeline"
--last-updated-after queryStartTime \
--last-updated-before queryEndTime \
--resource-group groupName
You can also query the activities run by pipeline runId
az datafactory activity-run query-by-pipeline-run \
--factory-name factoryName \
--last-updated-after queryStartTime \
--last-updated-before queryEndTime \
--resource-group groupName \
--run-id runId
Triggers are the other way that you can execute a pipeline run: more info
Examples:
az datafactory trigger create \
--factory-name factoryName \
--resource-group groupName \
--properties @{propertiesJsonPath} \
--name triggerName
# start a trigger
az datafactory trigger start \
--factory-name factoryName \
--resource-group groupName \
--name triggerName
# stop a trigger
az datafactory trigger stop \
--factory-name factoryName \
--resource-group groupName \
--name triggerName
You can use the query trigger run and rerun a trigger run if needed.
az datafactory trigger-run query-by-factory \
--factory-name factoryName \
--filters filterCondition \
--last-updated-after queryStartTime \
--last-updated-before queryEndTime \
--resource-group groupName
# You will get a triggerRunId for each trigger run. If it's not in process status, you can rerun it. Please note that the rerun can only apply to Tumble Window Trigger.
az datafactory trigger-run rerun \
--factory-name factoryName \
--resource-group groupName \
--run-id triggerRunId \
--trigger-name triggerName
The Integration-Runtime (IR) is the compute infrastructure used by data factory to provide the data integration capabilities: more info
Examples:
az datafactory integration-runtime self-hosted create \
--factory-name factoryName \
--description description \
--name integrationRuntimeName \
--resource-group groupName
az datafactory integration-runtime managed create \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName \
--description description \
--type-properties-compute-properties @{computePropertiesJsonPath} \
--type-properties-ssis-properties @{ssisPropertiesJsonPath}
az datafactory integration-runtime update \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName \
--auto-update updateMode \
--update-delay-offset delayOffset
If it's a self-hosted IR, you need to go to the portal to create the integration runtime nodes, but you can perform the following operations on it.
az datafactory integration-runtime get-connection-info \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName
az datafactory integration-runtime get-status \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName
az datafactory integration-runtime list-auth-key \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName
az datafactory integration-runtime regenerate-auth-key \
--factory-name factoryName \
--name integrationRuntimeName \
--key-name keyName \
--resource-group groupName
az datafactory integration-runtime sync-credentials \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName
az datafactory integration-runtime upgrade \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName
az datafactory integration-runtime-node get-ip-address \
--factory-name factoryName \
--integration-runtime-name integrationRuntimeName \
--node-name nodeName \
--resource-group groupName
If it's a managed IR, you can perform the following operations on it
az datafactory integration-runtime start \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName
az datafactory integration-runtime stop \
--factory-name factoryName \
--name integrationRuntimeName \
--resource-group groupName