-
Notifications
You must be signed in to change notification settings - Fork 24
/
compress_net.py
125 lines (92 loc) · 3.83 KB
/
compress_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""Compress a Fast R-CNN network using truncated SVD."""
import _init_paths
import caffe
import argparse
import numpy as np
import os, sys
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='Compress a Fast R-CNN network')
parser.add_argument('--def', dest='prototxt',
help='prototxt file defining the uncompressed network',
default=None, type=str)
parser.add_argument('--def-svd', dest='prototxt_svd',
help='prototxt file defining the SVD compressed network',
default=None, type=str)
parser.add_argument('--net', dest='caffemodel',
help='model to compress',
default=None, type=str)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
def compress_weights(W, l):
"""Compress the weight matrix W of an inner product (fully connected) layer
using truncated SVD.
Parameters:
W: N x M weights matrix
l: number of singular values to retain
Returns:
Ul, L: matrices such that W \approx Ul*L
"""
# numpy doesn't seem to have a fast truncated SVD algorithm...
# this could be faster
U, s, V = np.linalg.svd(W, full_matrices=False)
Ul = U[:, :l]
sl = s[:l]
Vl = V[:l, :]
L = np.dot(np.diag(sl), Vl)
return Ul, L
def main():
args = parse_args()
# prototxt = 'models/VGG16/test.prototxt'
# caffemodel = 'snapshots/vgg16_fast_rcnn_iter_40000.caffemodel'
net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST)
# prototxt_svd = 'models/VGG16/svd/test_fc6_fc7.prototxt'
# caffemodel = 'snapshots/vgg16_fast_rcnn_iter_40000.caffemodel'
net_svd = caffe.Net(args.prototxt_svd, args.caffemodel, caffe.TEST)
print('Uncompressed network {} : {}'.format(args.prototxt, args.caffemodel))
print('Compressed network prototxt {}'.format(args.prototxt_svd))
out = os.path.splitext(os.path.basename(args.caffemodel))[0] + '_svd'
out_dir = os.path.dirname(args.caffemodel)
# Compress fc6
if net_svd.params.has_key('fc6_L'):
l_fc6 = net_svd.params['fc6_L'][0].data.shape[0]
print(' fc6_L bottleneck size: {}'.format(l_fc6))
# uncompressed weights and biases
W_fc6 = net.params['fc6'][0].data
B_fc6 = net.params['fc6'][1].data
print(' compressing fc6...')
Ul_fc6, L_fc6 = compress_weights(W_fc6, l_fc6)
assert(len(net_svd.params['fc6_L']) == 1)
# install compressed matrix factors (and original biases)
net_svd.params['fc6_L'][0].data[...] = L_fc6
net_svd.params['fc6_U'][0].data[...] = Ul_fc6
net_svd.params['fc6_U'][1].data[...] = B_fc6
out += '_fc6_{}'.format(l_fc6)
# Compress fc7
if net_svd.params.has_key('fc7_L'):
l_fc7 = net_svd.params['fc7_L'][0].data.shape[0]
print ' fc7_L bottleneck size: {}'.format(l_fc7)
W_fc7 = net.params['fc7'][0].data
B_fc7 = net.params['fc7'][1].data
print(' compressing fc7...')
Ul_fc7, L_fc7 = compress_weights(W_fc7, l_fc7)
assert(len(net_svd.params['fc7_L']) == 1)
net_svd.params['fc7_L'][0].data[...] = L_fc7
net_svd.params['fc7_U'][0].data[...] = Ul_fc7
net_svd.params['fc7_U'][1].data[...] = B_fc7
out += '_fc7_{}'.format(l_fc7)
filename = '{}/{}.caffemodel'.format(out_dir, out)
net_svd.save(filename)
print 'Wrote svd model to: {:s}'.format(filename)
if __name__ == '__main__':
main()