Stars
- All languages
- Assembly
- C
- C#
- C++
- COBOL
- CSS
- Clojure
- CoffeeScript
- Common Lisp
- Coq
- Crystal
- Cuda
- Cython
- Dart
- Dockerfile
- Elixir
- Emacs Lisp
- Fortran
- Go
- HCL
- HTML
- Haskell
- Java
- JavaScript
- Julia
- Jupyter Notebook
- Kotlin
- LLVM
- Lean
- Lua
- MATLAB
- MDX
- Makefile
- Markdown
- Mathematica
- Mojo
- Mustache
- Nim
- Nix
- Objective-C++
- PHP
- Pascal
- Perl
- Python
- Q#
- QML
- R
- Roff
- Ruby
- Rust
- SCSS
- SQL
- Scala
- Scheme
- Shell
- Solidity
- Svelte
- Swift
- TeX
- TypeScript
- Vim Script
- Vue
- Zig
Multi-language suite for high-performance solvers of differential equations and scientific machine learning (SciML) components. Ordinary differential equations (ODEs), stochastic differential equat…
Modeling language for Mathematical Optimization (linear, mixed-integer, conic, semidefinite, nonlinear)
Bayesian inference with probabilistic programming.
Forward Mode Automatic Differentiation for Julia
Julia code for the book Reinforcement Learning An Introduction
High accuracy derivatives, estimated via numerical finite differences (formerly FDM.jl)
Julia package to run Dynamic Power System simulations. Part of the Scalable Integrated Infrastructure Planning Initiative at the National Renewable Energy Lab.
Textbook implementation of backprop (from the Jacobian point of view) in Julia.