forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11 - 3 - Error Metrics for Skewed Classes (12 min).srt
1616 lines (1293 loc) · 28.6 KB
/
11 - 3 - Error Metrics for Skewed Classes (12 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,290 --> 00:00:01,690
In the previous video, I talked
在前面的课程中
(字幕整理:中国海洋大学 黄海广,haiguang2000@qq.com )
2
00:00:02,060 --> 00:00:03,900
about error analysis and the
我提到了误差分析
3
00:00:04,350 --> 00:00:06,070
importance of having error
以及设定误差度量值的重要性
4
00:00:06,330 --> 00:00:07,480
metrics, that is of having
那就是
5
00:00:08,210 --> 00:00:10,200
a single real number evaluation metric
设定某个实数来评估你的学习算法
6
00:00:11,020 --> 00:00:13,290
for your learning algorithm to tell how well it's doing.
并衡量它的表现
7
00:00:14,310 --> 00:00:15,670
In the context of evaluation
有了算法的评估
8
00:00:16,700 --> 00:00:18,320
and of error metrics, there is
和误差度量值
9
00:00:18,430 --> 00:00:20,290
one important case, where it's
有一件重要的事情要注意
10
00:00:20,480 --> 00:00:22,180
particularly tricky to come
就是使用一个合适的误差度量值
11
00:00:22,510 --> 00:00:24,430
up with an appropriate error metric,
这有时会对于你的学习算法
12
00:00:24,930 --> 00:00:26,990
or evaluation metric, for your learning algorithm.
造成非常微妙的影响
13
00:00:28,040 --> 00:00:29,140
That case is the case
这件重要的事情就是
14
00:00:29,610 --> 00:00:31,310
of what's called skewed classes.
偏斜类(skewed classes)的问题
15
00:00:32,610 --> 00:00:33,480
Let me tell you what that means.
让我告诉你这是什么意思
16
00:00:36,170 --> 00:00:37,550
Consider the problem of cancer
想一想之前的癌症分类问题
17
00:00:38,180 --> 00:00:40,040
classification, where we have
我们拥有
18
00:00:40,300 --> 00:00:41,960
features of medical patients and
内科病人的特征变量
19
00:00:42,070 --> 00:00:44,050
we want to decide whether or not they have cancer.
我们希望知道他们是否患有癌症
20
00:00:44,630 --> 00:00:45,790
So this is like the malignant
因此这就像恶性
21
00:00:46,350 --> 00:00:48,290
versus benign tumor classification
与良性肿瘤的分类问题
22
00:00:48,930 --> 00:00:50,070
example that we had earlier.
我们之前讲过这个
23
00:00:51,140 --> 00:00:52,360
So let's say y equals 1 if the
我们假设 y=1 表示患者患有癌症
24
00:00:52,550 --> 00:00:53,780
patient has cancer and y equals 0
假设 y=0
25
00:00:54,280 --> 00:00:56,530
if they do not.
表示他们没有得癌症
26
00:00:56,810 --> 00:00:57,460
We have trained the progression
我们训练逻辑回归模型
27
00:00:57,940 --> 00:00:59,780
classifier and let's say
假设我们用测试集
28
00:01:00,000 --> 00:01:01,520
we test our classifier on
检验了这个分类模型
29
00:01:01,660 --> 00:01:04,470
a test set and find that we get 1 percent error.
并且发现它只有1%的错误
30
00:01:04,790 --> 00:01:05,720
So, we're making 99% correct diagnosis.
因此我们99%会做出正确诊断
31
00:01:06,530 --> 00:01:09,610
Seems like a really impressive result, right.
看起来是非常不错的结果
32
00:01:09,910 --> 00:01:10,920
We're correct 99% percent of the time.
我们99%的情况都是正确的
33
00:01:12,560 --> 00:01:13,630
But now, let's say we find
但是 假如我们发现
34
00:01:13,940 --> 00:01:15,660
out that only 0.5 percent
在测试集中
35
00:01:16,510 --> 00:01:17,950
of patients in our
只有0.5%的患者
36
00:01:18,160 --> 00:01:19,590
training test sets actually have cancer.
真正得了癌症
37
00:01:20,400 --> 00:01:21,900
So only half a
因此
38
00:01:21,950 --> 00:01:23,460
percent of the patients that
在我们的筛选程序里
39
00:01:23,580 --> 00:01:25,500
come through our screening process have cancer.
只有0.5%的患者患了癌症
40
00:01:26,560 --> 00:01:27,970
In this case, the 1%
因此在这个例子中
41
00:01:28,270 --> 00:01:30,010
error no longer looks so impressive.
1%的错误率就不再显得那么好了
42
00:01:31,130 --> 00:01:32,510
And in particular, here's a piece
举个具体的例子
43
00:01:32,670 --> 00:01:33,730
of code, here's actually a piece
这里有一行代码
44
00:01:33,850 --> 00:01:35,730
of non learning code that takes
不是机器学习代码
45
00:01:36,080 --> 00:01:38,260
this input of features x and it ignores it.
它忽略了输入值X
46
00:01:38,480 --> 00:01:39,820
It just sets y equals 0
它让y总是等于0
47
00:01:39,950 --> 00:01:41,640
and always predicts, you
因此它总是预测
48
00:01:41,720 --> 00:01:43,920
know, nobody has cancer and this
没有人得癌症
49
00:01:44,170 --> 00:01:45,720
algorithm would actually get
那么这个算法实际上只有
50
00:01:46,000 --> 00:01:47,840
0.5 percent error.
0.5%的错误率
51
00:01:48,830 --> 00:01:50,280
So this is even better than
因此这甚至比
52
00:01:50,400 --> 00:01:51,140
the 1% error that we were getting just now
我们之前得到的1%的错误率更好
53
00:01:51,240 --> 00:01:52,960
and this is a non
这是一个
54
00:01:53,160 --> 00:01:54,600
learning algorithm that you know, it is just
非机器学习算法
55
00:01:54,800 --> 00:01:56,950
predicting y equals 0 all the time.
因为它只是预测y总是等于0
56
00:01:57,990 --> 00:01:59,430
So this setting of when
这种情况发生在
57
00:02:00,060 --> 00:02:01,980
the ratio of positive to
正例和负例的比率
58
00:02:02,180 --> 00:02:04,130
negative examples is very close
非常接近于
59
00:02:04,810 --> 00:02:06,480
to one of two extremes, where,
一个极端
60
00:02:07,040 --> 00:02:08,620
in this case, the number of
在这个例子中
61
00:02:08,710 --> 00:02:10,050
positive examples is much,
正样本的数量
62
00:02:10,350 --> 00:02:11,310
much smaller than the number
与负样本的数量相比
63
00:02:11,620 --> 00:02:13,180
of negative examples because y
非常非常少
64
00:02:13,480 --> 00:02:15,500
equals one so rarely, this
因为y=1非常少
65
00:02:15,730 --> 00:02:16,850
is what we call the
我们把这种情况叫做
66
00:02:17,000 --> 00:02:18,600
case of skewed classes.
偏斜类
67
00:02:20,790 --> 00:02:21,710
We just have a lot more
一个类中的样本数
68
00:02:22,000 --> 00:02:23,140
of examples from one class
与另一个类的数据相比
69
00:02:23,570 --> 00:02:25,040
than from the other class.
多很多
70
00:02:25,220 --> 00:02:26,560
And by just predicting y equals
通过总是预测y=0
71
00:02:26,920 --> 00:02:28,270
0 all the time, or maybe
或者
72
00:02:28,650 --> 00:02:29,650
our predicting y equals 1
总是预测y=1
73
00:02:29,790 --> 00:02:32,080
all the time, an algorithm can do pretty well.
算法可能表现非常好
74
00:02:32,980 --> 00:02:34,050
So the problem with using
因此使用分类误差
75
00:02:34,670 --> 00:02:36,210
classification error or classification
或者分类精确度
76
00:02:36,590 --> 00:02:39,240
accuracy as our evaluation metric is the following.
来作为评估度量可能会产生如下问题
77
00:02:40,430 --> 00:02:41,360
Let's say you have one joining
假如说你有一个算法
78
00:02:41,700 --> 00:02:43,570
algorithm that's getting 99.2% accuracy.
它的精确度是99.2%
79
00:02:46,530 --> 00:02:47,200
So, that's a 0.8% error.
因此它只有0.8%的误差
80
00:02:47,330 --> 00:02:50,850
Let's say you
假设
81
00:02:51,000 --> 00:02:52,000
make a change to your algorithm
你对你的算法做出了一点改动
82
00:02:52,810 --> 00:02:53,890
and you now are getting
现在你得到了
83
00:02:54,280 --> 00:02:56,080
99.5% accuracy.
99.5%的精确度
84
00:02:59,280 --> 00:03:02,110
That is 0.5% error.
只有0.5%的误差
85
00:03:04,230 --> 00:03:06,460
So, is this an improvement to the algorithm or not?
这到底是不是算法的一个提升呢
86
00:03:06,770 --> 00:03:07,930
One of the nice things
用某个实数来
87
00:03:08,300 --> 00:03:09,990
about having a single real
作为评估度量值
88
00:03:10,120 --> 00:03:11,480
number evaluation metric is this
的一个好处就是
89
00:03:11,650 --> 00:03:13,080
helps us to quickly decide if
它可以帮助我们迅速决定
90
00:03:13,240 --> 00:03:15,530
we just need a good change to the algorithm or not.
我们是否需要对算法做出一些改进
91
00:03:16,370 --> 00:03:20,160
By going from 99.2% accuracy to 99.5% accuracy.
将精确度从99.2%提高到99.5%
92
00:03:21,430 --> 00:03:22,490
You know, did we just do something
但是我们的改进到底是有用的
93
00:03:22,780 --> 00:03:23,640
useful or did we
还是说
94
00:03:23,770 --> 00:03:25,150
just replace our code with
我们只是把代码替换成了
95
00:03:25,320 --> 00:03:26,690
something that just predicts y equals
例如总是预测y=0
96
00:03:27,000 --> 00:03:28,830
zero more often?
这样的东西
97
00:03:29,300 --> 00:03:30,430
So, if you have very skewed classes
因此如果你有一个偏斜类
98
00:03:31,340 --> 00:03:33,280
it becomes much harder to use
用分类精确度
99
00:03:33,640 --> 00:03:36,000
just classification accuracy, because you
并不能很好地衡量算法
100
00:03:36,120 --> 00:03:37,730
can get very high classification accuracies
因为你可能会获得一个很高的精确度
101
00:03:38,420 --> 00:03:40,950
or very low errors, and
非常低的错误率
102
00:03:41,110 --> 00:03:42,880
it's not always clear if
但是我们并不知道
103
00:03:43,070 --> 00:03:44,190
doing so is really improving
我们是否真的提升了
104
00:03:44,770 --> 00:03:45,780
the quality of your classifier
分类模型的质量
105
00:03:46,400 --> 00:03:48,320
because predicting y equals 0 all the
因为总是预测y=0
106
00:03:48,380 --> 00:03:50,710
time doesn't seem like
并不是一个
107
00:03:51,570 --> 00:03:52,570
a particularly good classifier.
好的分类模型
108
00:03:53,900 --> 00:03:55,500
But just predicting y equals 0 more
但是总是预测y=0
109
00:03:55,720 --> 00:03:57,300
often can bring your error
会将你的误差降低至
110
00:03:57,830 --> 00:03:59,460
down to, you know, maybe as
比如
111
00:03:59,650 --> 00:04:01,120
low as 0.5%.
降低至0.5%
112
00:04:01,490 --> 00:04:02,590
When we're faced with such
当我们遇到
113
00:04:02,770 --> 00:04:04,990
a skewed classes therefore we
这样一个偏斜类时
114
00:04:05,250 --> 00:04:06,350
would want to come up
我们希望有一个
115
00:04:06,470 --> 00:04:07,920
with a different error metric
不同的误差度量值
116
00:04:08,320 --> 00:04:09,500
or a different evaluation metric.
或者不同的评估度量值
117
00:04:10,290 --> 00:04:12,360
One such evaluation metric are
其中一种评估度量值
118
00:04:12,870 --> 00:04:14,240
what's called precision recall.
叫做查准率(precision)和召回率(recall)
119
00:04:15,440 --> 00:04:16,410
Let me explain what that is.
让我来解释一下
120
00:04:17,520 --> 00:04:19,890
Let's say we are evaluating a classifier on the test set.
假设我们正在用测试集来评估一个分类模型
121
00:04:20,750 --> 00:04:21,800
For the examples in the
对于
122
00:04:21,890 --> 00:04:23,890
test set the actual
测试集中的样本
123
00:04:25,450 --> 00:04:26,880
class of that example
每个测试集中的样本
124
00:04:27,320 --> 00:04:28,440
in the test set is going to
都会等于
125
00:04:28,550 --> 00:04:29,810
be either one or zero, right,
0或者1
126
00:04:30,440 --> 00:04:32,520
if there is a binary classification problem.
假设这是一个二分问题
127
00:04:33,870 --> 00:04:34,960
And what our learning algorithm
我们的学习算法
128
00:04:35,360 --> 00:04:37,070
will do is it will, you know,
要做的是
129
00:04:37,930 --> 00:04:39,270
predict some value for the
做出值的预测
130
00:04:39,450 --> 00:04:41,160
class and our learning
并且学习算法
131
00:04:41,560 --> 00:04:43,300
algorithm will predict the value
会为每一个
132
00:04:43,760 --> 00:04:44,830
for each example in my
测试集中的实例
133
00:04:44,910 --> 00:04:46,520
test set and the predicted value
做出预测
134
00:04:46,920 --> 00:04:48,560
will also be either one or zero.
预测值也是等于0或1
135
00:04:50,050 --> 00:04:52,060
So let me draw a two
让我画一个
136
00:04:52,270 --> 00:04:53,340
by two table as follows,
2x2的表格
137
00:04:53,910 --> 00:04:55,870
depending on a full of these entries
基于所有这些值
138
00:04:56,320 --> 00:04:57,800
depending on what was the
基于
139
00:04:57,960 --> 00:04:59,350
actual class and what was the predicted class.
实际的类与预测的类
140
00:05:00,220 --> 00:05:01,270
If we have an
如果
141
00:05:01,570 --> 00:05:02,890
example where the actual class is
有一个样本它实际所属的类是1
142
00:05:02,970 --> 00:05:03,950
one and the predicted class
预测的类也是1
143
00:05:04,240 --> 00:05:06,140
is one then that's called
那么
144
00:05:07,620 --> 00:05:08,640
an example that's a true
我们把这个样本叫做真阳性(true positive)
145
00:05:08,940 --> 00:05:10,300
positive, meaning our algorithm
意思是说我们的学习算法
146
00:05:10,730 --> 00:05:11,700
predicted that it's positive
预测这个值为阳性
147
00:05:12,400 --> 00:05:15,780
and in reality the example is positive.
实际上这个样本也确实是阳性
148
00:05:16,240 --> 00:05:17,300
If our learning algorithm predicted that
如果我们的学习算法
149
00:05:17,490 --> 00:05:19,010
something is negative, class zero,
预测某个值是阴性 等于0
150
00:05:19,570 --> 00:05:20,620
and the actual class is also
实际的类也确实属于0
151
00:05:20,970 --> 00:05:23,650
class zero then that's what's called a true negative.
那么我们把这个叫做真阴性(true negative)
152
00:05:24,070 --> 00:05:26,370
We predicted zero and it actually is zero.
我们预测为0的值实际上也等于0
153
00:05:27,880 --> 00:05:28,740
To find the other two boxes,
还剩另外的两个单元格
154
00:05:29,470 --> 00:05:31,120
if our learning algorithm predicts that
如果我们的学习算法
155
00:05:31,360 --> 00:05:33,210
the class is one but the
预测某个值等于1
156
00:05:34,340 --> 00:05:36,370
actual class is zero, then
但是实际上它等于0
157
00:05:36,670 --> 00:05:37,910
that's called a false positive.
这个叫做假阳性(false positive)
158
00:05:39,350 --> 00:05:40,630
So that means our algorithm for
比如我们的算法
159
00:05:40,830 --> 00:05:41,970
the patient is cancelled out in
预测某些病人患有癌症
160
00:05:42,190 --> 00:05:43,520
reality if the patient does not.
但是事实上他们并没有得癌症
161
00:05:44,730 --> 00:05:47,340
And finally, the last box is a zero, one.
最后 这个单元格是 1和0
162
00:05:48,200 --> 00:05:50,330
That's called a false negative
这个叫做假阴性(false negative)
163
00:05:51,180 --> 00:05:52,690
because our algorithm predicted
因为我们的算法预测值为0
164
00:05:53,450 --> 00:05:56,170
zero, but the actual class was one.
但是实际值是1
165
00:05:57,230 --> 00:05:59,020
And so, we
这样
166
00:05:59,150 --> 00:06:00,830
have this little sort of two by
我们有了一个2x2的表格
167
00:06:00,990 --> 00:06:02,720
two table based on
基于
168
00:06:03,250 --> 00:06:05,500
what was the actual class and what was the predicted class.
实际类与预测类
169
00:06:07,080 --> 00:06:08,380
So here's a different way
这样我们有了一个
170
00:06:08,690 --> 00:06:10,310
of evaluating the performance of
另一种方式来
171
00:06:10,420 --> 00:06:11,940
our algorithm. We're
评估算法的表现
172
00:06:12,550 --> 00:06:12,870
going to compute two numbers.
我们要计算两个数字
173
00:06:13,310 --> 00:06:14,780
The first is called precision -
第一个叫做查准率
174
00:06:14,940 --> 00:06:16,100
and what that says is,
这个意思是
175
00:06:17,170 --> 00:06:18,330
of all the patients where we've
对于所有我们预测
176
00:06:18,580 --> 00:06:19,580
predicted that they have cancer,
他们患有癌症的病人
177
00:06:20,640 --> 00:06:23,140
what fraction of them actually have cancer?
有多大比率的病人是真正患有癌症的
178
00:06:24,560 --> 00:06:25,310
So let me write this down,
让我把这个写下来
179
00:06:26,020 --> 00:06:27,300
the precision of a classifier
一个分类模型的查准率
180
00:06:27,680 --> 00:06:29,070
is the number of true
等于
181
00:06:29,310 --> 00:06:31,880
positives divided by
真阳性除以
182
00:06:32,940 --> 00:06:35,190
the number that we predicted
所有我们预测为阳性
183
00:06:37,140 --> 00:06:37,370
as positive, right?
的数量
184
00:06:39,150 --> 00:06:40,660
So of all the patients that
对于那些病人
185
00:06:41,090 --> 00:06:43,590
we went to those patients and we told them, "We think you have cancer."
我们告诉他们 "你们患有癌症"
186
00:06:43,890 --> 00:06:45,730
Of all those patients, what
对于这些病人而言
187
00:06:45,890 --> 00:06:47,410
fraction of them actually have cancer?
有多大比率是真正患有癌症的
188
00:06:47,500 --> 00:06:48,920
So that's called precision.
这个就叫做查准率
189
00:06:49,800 --> 00:06:50,680
And another way to write this
另一个写法是
190
00:06:50,950 --> 00:06:54,920
would be true positives and
分子是真阳性
191
00:06:55,010 --> 00:06:56,430
then in the denominator is the
分母是
192
00:06:56,670 --> 00:06:59,050
number of predicted positives, and
所有预测阳性的数量
193
00:06:59,210 --> 00:07:00,160
so that would be the
那么这个等于
194
00:07:00,240 --> 00:07:01,730
sum of the, you know, entries
表格第一行的值
195
00:07:02,410 --> 00:07:04,510
in this first row of the table.
的和
196
00:07:04,720 --> 00:07:07,760
So it would be true positives divided by true positives.
也就是真阳性除以真阳性...
197
00:07:08,670 --> 00:07:10,470
I'm going to abbreviate positive
这里我把阳性简写为
198
00:07:11,220 --> 00:07:12,980
as POS and then
POS
199
00:07:13,130 --> 00:07:15,470
plus false positives, again
加上假阳性
200
00:07:15,890 --> 00:07:18,550
abbreviating positive using POS.
这里我还是把阳性简写为POS