forked from OpenNMT/OpenNMT-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
318 lines (253 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from __future__ import division
import os
import onmt
import onmt.Models
import onmt.modules
import argparse
import torch
import torch.nn as nn
from torch import cuda
import dill
import opts
parser = argparse.ArgumentParser(description='train.py')
# Data and loading options
parser.add_argument('-data', required=True,
help='Path to the *-train.pt file from preprocess.py')
# opts.py
opts.add_md_help_argument(parser)
opts.model_opts(parser)
opts.train_opts(parser)
opt = parser.parse_args()
if opt.word_vec_size != -1:
opt.src_word_vec_size = opt.word_vec_size
opt.tgt_word_vec_size = opt.word_vec_size
if opt.layers != -1:
opt.enc_layers = opt.layers
opt.dec_layers = opt.layers
opt.brnn = (opt.encoder_type == "brnn")
if opt.seed > 0:
torch.manual_seed(opt.seed)
if torch.cuda.is_available() and not opt.gpuid:
print("WARNING: You have a CUDA device, should run with -gpuid 0")
if opt.gpuid:
cuda.set_device(opt.gpuid[0])
if opt.seed > 0:
torch.cuda.manual_seed(opt.seed)
# Set up the Crayon logging server.
if opt.exp_host != "":
from pycrayon import CrayonClient
cc = CrayonClient(hostname=opt.exp_host)
experiments = cc.get_experiment_names()
print(experiments)
if opt.exp in experiments:
cc.remove_experiment(opt.exp)
experiment = cc.create_experiment(opt.exp)
def make_features(batch, fields):
# TODO: This is bit hacky remove.
feats = []
for j in range(100):
key = "src_feat_" + str(j)
if key not in fields:
break
feats.append(batch.__dict__[key])
cat = [batch.src[0]] + feats
cat = [c.unsqueeze(2) for c in cat]
return torch.cat(cat, 2)
def eval(model, criterion, data, fields):
validData = onmt.IO.OrderedIterator(
dataset=data, device=opt.gpuid[0] if opt.gpuid else -1,
batch_size=opt.batch_size, train=False, sort=True)
stats = onmt.Loss.Statistics()
model.eval()
loss = onmt.Loss.LossCompute(model.generator, criterion,
fields["tgt"].vocab, data, 0, opt)
for batch in validData:
_, src_lengths = batch.src
src = make_features(batch, fields)
outputs, attn, _ = model(src, batch.tgt, src_lengths)
gen_state = loss.makeLossBatch(outputs, batch, attn,
(0, batch.tgt.size(0)))
_, batch_stats = loss.computeLoss(batch=batch, **gen_state)
stats.update(batch_stats)
model.train()
return stats
def trainModel(model, trainData, validData, fields, optim):
model.train()
pad_id = fields['tgt'].vocab.stoi[onmt.IO.PAD_WORD]
# Define criterion of each GPU.
if not opt.copy_attn:
criterion = onmt.Loss.NMTCriterion(len(fields['tgt'].vocab), opt,
pad_id)
else:
criterion = onmt.modules.CopyCriterion(len(fields['tgt'].vocab),
opt.copy_attn_force, pad_id)
splitter = onmt.Loss.Splitter(opt.max_generator_batches)
train = onmt.IO.OrderedIterator(
dataset=trainData, batch_size=opt.batch_size,
device=opt.gpuid[0] if opt.gpuid else -1,
repeat=False)
def trainEpoch(epoch):
closs = onmt.Loss.LossCompute(model.generator, criterion,
fields["tgt"].vocab, trainData,
epoch, opt)
total_stats = onmt.Loss.Statistics()
report_stats = onmt.Loss.Statistics()
for i, batch in enumerate(train):
target_size = batch.tgt.size(0)
dec_state = None
_, src_lengths = batch.src
src = make_features(batch, fields)
report_stats.n_src_words += src_lengths.sum()
# Truncated BPTT
trunc_size = opt.truncated_decoder if opt.truncated_decoder \
else target_size
for j in range(0, target_size-1, trunc_size):
# (1) Create truncated target.
tgt_r = (j, j + trunc_size)
tgt = batch.tgt[tgt_r[0]: tgt_r[1]]
# (2) F-prop all but generator.
# Main training loop
model.zero_grad()
outputs, attn, dec_state = \
model(src, tgt, src_lengths, dec_state)
# (2) F-prop/B-prob generator in shards for memory
# efficiency.
batch_stats = onmt.Loss.Statistics()
gen_state = closs.makeLossBatch(outputs, batch, attn,
tgt_r)
for shard in splitter.splitIter(gen_state):
# Compute loss and backprop shard.
loss, stats = closs.computeLoss(batch=batch,
**shard)
loss.div(batch.batch_size).backward()
batch_stats.update(stats)
# (3) Update the parameters and statistics.
optim.step()
total_stats.update(batch_stats)
report_stats.update(batch_stats)
# If truncated, don't backprop fully.
if dec_state is not None:
dec_state.detach()
if i % opt.report_every == -1 % opt.report_every:
report_stats.output(epoch, i+1, len(train),
total_stats.start_time)
if opt.exp_host:
report_stats.log("progress", experiment, optim)
report_stats = onmt.Loss.Statistics()
return total_stats
for epoch in range(opt.start_epoch, opt.epochs + 1):
print('')
# (1) train for one epoch on the training set
train_stats = trainEpoch(epoch)
print('Train perplexity: %g' % train_stats.ppl())
print('Train accuracy: %g' % train_stats.accuracy())
# (2) evaluate on the validation set
valid_stats = eval(model, criterion, validData, fields)
print('Validation perplexity: %g' % valid_stats.ppl())
print('Validation accuracy: %g' % valid_stats.accuracy())
# Log to remote server.
if opt.exp_host:
train_stats.log("train", experiment, optim)
valid_stats.log("valid", experiment, optim)
# (3) update the learning rate
optim.updateLearningRate(valid_stats.ppl(), epoch)
model_state_dict = (model.module.state_dict() if len(opt.gpuid) > 1
else model.state_dict())
model_state_dict = {k: v for k, v in model_state_dict.items()
if 'generator' not in k}
generator_state_dict = (model.generator.module.state_dict()
if len(opt.gpuid) > 1
else model.generator.state_dict())
# (4) drop a checkpoint
if epoch >= opt.start_checkpoint_at:
checkpoint = {
'model': model_state_dict,
'generator': generator_state_dict,
'fields': fields,
'opt': opt,
'epoch': epoch,
'optim': optim
}
torch.save(checkpoint,
'%s_acc_%.2f_ppl_%.2f_e%d.pt'
% (opt.save_model, valid_stats.accuracy(),
valid_stats.ppl(), epoch),
pickle_module=dill)
def check_model_path():
save_model_path = os.path.abspath(opt.save_model)
model_dirname = os.path.dirname(save_model_path)
if not os.path.exists(model_dirname):
os.makedirs(model_dirname)
def main():
print("Loading data from '%s'" % opt.data)
train = torch.load(opt.data + '.train.pt', pickle_module=dill)
fields = torch.load(opt.data + '.fields.pt', pickle_module=dill)
valid = torch.load(opt.data + '.valid.pt', pickle_module=dill)
fields = dict(fields)
src_features = [fields["src_feat_"+str(j)]
for j in range(train.nfeatures)]
checkpoint = None
dict_checkpoint = opt.train_from
if dict_checkpoint:
print('Loading dicts from checkpoint at %s' % dict_checkpoint)
checkpoint = torch.load(dict_checkpoint,
map_location=lambda storage, loc: storage)
fields = checkpoint['fields']
print(' * vocabulary size. source = %d; target = %d' %
(len(fields['src'].vocab), len(fields['tgt'].vocab)))
for j, feat in enumerate(src_features):
print(' * src feature %d size = %d' %
(j, len(feat.vocab)))
print(' * number of training sentences. %d' %
len(train))
print(' * maximum batch size. %d' % opt.batch_size)
print('Building model...')
cuda = (len(opt.gpuid) >= 1)
model = onmt.Models.make_base_model(opt, opt, fields, cuda, checkpoint)
print(model)
if opt.train_from:
print('Loading model from checkpoint at %s'
% opt.train_from)
opt.start_epoch = checkpoint['epoch'] + 1
if len(opt.gpuid) > 1:
print('Multi gpu training ', opt.gpuid)
model = nn.DataParallel(model, device_ids=opt.gpuid, dim=1)
# generator = nn.DataParallel(generator, device_ids=opt.gpuid, dim=0)
if not opt.train_from:
if opt.param_init != 0.0:
print('Intializing params')
for p in model.parameters():
p.data.uniform_(-opt.param_init, opt.param_init)
model.encoder.embeddings.load_pretrained_vectors(opt.pre_word_vecs_enc)
model.decoder.embeddings.load_pretrained_vectors(opt.pre_word_vecs_dec)
optim = onmt.Optim(
opt.optim, opt.learning_rate, opt.max_grad_norm,
lr_decay=opt.learning_rate_decay,
start_decay_at=opt.start_decay_at,
opt=opt
)
else:
print('Loading optimizer from checkpoint:')
optim = checkpoint['optim']
print(optim)
optim.set_parameters(model.parameters())
if opt.train_from:
optim.optimizer.load_state_dict(
checkpoint['optim'].optimizer.state_dict())
nParams = sum([p.nelement() for p in model.parameters()])
print('* number of parameters: %d' % nParams)
enc = 0
dec = 0
for name, param in model.named_parameters():
if 'encoder' in name:
enc += param.nelement()
elif 'decoder' in name:
dec += param.nelement()
else:
print(name, param.nelement())
print('encoder: ', enc)
print('decoder: ', dec)
check_model_path()
trainModel(model, train, valid, fields, optim)
if __name__ == "__main__":
main()